• Title/Summary/Keyword: high pressure compressor

Search Result 263, Processing Time 0.027 seconds

Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290) (내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

Development of Fuel Conditioning System for 30 kW-class LFG Gasturbine Power Generation (30kW급 LFG 가스터빈 발전용 연료화 정제시스템 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.6 no.1
    • /
    • pp.29-37
    • /
    • 2010
  • Biogas is a carbon neutral energy and consists of mostly methane and carbon dioxide, with smaller amounts of water vapor, and trace amounts of $H_2S$, Siloxane and other impurities. Hydrogen sulfide and Siloxane usually must be removed before the gas can be used for generation of electricity or heat. The goals of this project are to develope the Fuel conditioning system of Land Fill Gas for 30kW-Micro Gas Turbine co-generation system. The fuel conditioning system mainly consists of $H_2S$ removal system, Land Fill Gas compressor, Siloxane removal system and many filtering systems. The fuel requirement of 30kW MGT is at least 32% of $CH_4$, $H_2S$ (<30 ppm), Siloxane (<5ppb) and supply pressure (> 0.6 MPa) from LFG compressor. Main mechnical charateristics of Micro Gas Turbine system by using LFG have the specific performance; 1) high speed turbine speed (96,000 rpm) 2) very clean emmission NOx (<9 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for LFG fuel conditioning system. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of Land Fill Gas (LFG), this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

Performance Test of 2 kW Class Reverse Brayton Refrigeration System (냉동능력 2 kW 급 역브레이튼 극저온 냉각시스템 성능시험)

  • KO, JUNSEOK;LEE, KEUN-TAE;PARK, SEONG-JE;KIM, JONGWOO;CHOO, SANGYOON;HONG, YONG-JU;IN, SEHWAN;PARK, JIHO;KIM, HYOBONG;YEOM, HANKIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.429-435
    • /
    • 2020
  • This paper describes the experimental study of reverse-Brayton refrigeration system for application to high temperature superconductivity electric devices and LNG re-liquefaction. The reverse-Brayton refrigeration cycle is designed with operating pressure of 0.5 and 1.0 MPa, cooling capacity of 2 kW at 77 K, and neon as a working fluid. The refrigeration system is developed with multi scroll compressor, turbo expander and plate heat exchanger. From experiments, the performance characteristics of used components is measured and discussed for 77-120 K of operating temperature. The developed refrigeration system shows the cooling capacity of 1.23 kW at 77 K and 1.64 kW at 110 K.

Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner (냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

Probabilistic Approach for Fighter Inlet Hammershock Design Pressure (전투기 흡입구 해머쇼크 설계압력에 대한 확률론적 접근법)

  • Bae, Hyo-gil;Lee, Hoon Sik;Kim, Yun-mi;Jeong, In Myon;Lee, SangHyo;Cho, Dae-yeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.72-78
    • /
    • 2019
  • Inlet hammershock is the critical loads condition for designing the inlet duct structure of a fighter. The sudden flow reduction in engine compressor causes inlet hammershock with high pressure. The traditional method was used to combine extreme conditions (maximum speed, sea level altitude, and cold day) to analyze this compression wave inlet hammershock pressure. However, after the 90s there have been papers that presented the probabilistic approach for the inlet hammershock to achieve the appropriate design pressure. This study shows how to analyze the inlet hammershock pressure by making practical use of the Republic of Korea Air Force real flight usage data under probabilistic approach and then analyze approximately 30% decreased inlet hammershock pressure compared with the traditional valve.

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

An Experimental Study of Liquid.Gas Heat Exchange Pipe Inserted Capillary Tube for Room Air-Conditioner (모세관 삽입 룸 에어컨용 액.가스 열교환 배관에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.702-708
    • /
    • 2006
  • This study shows the experimental characteristics of the double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for circulating of a liquid of high temperature, pressure and a gas of low temperature, pressure at the same time. So the functions of pipe and pipe's expansion and heat transfer are presented simultaneously. In the result, the temperature of gas refrigerant at the inlet of compressor increased about $5^{\circ}C$ by the heat transfer with liquid refrigerant in case of the double pipe. And liquid gas refrigerant which the temperature at the inlet of evaporator decreased about $3^{\circ}C$ comparing with the existing type flows into an evaporator COP of the double pipe increased about $7{\sim}10%$ comparing with that of the conventional pipe. And the noise of the double pipe at capillary tube is less than that of the conventional type about 3dB. Consequently. it is convinced the superiority of the double pipe in the heat loss and soundproofing aspect.

Performance Analysis of Regenerative Gas Turbine System with Afterfogging (압축기 출구 물분사가 있는 재생 가스터빈 시스템의 성능해석)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.448-455
    • /
    • 2009
  • A performance analysis of the regenerative gas turbine system with afterfogging is carried out. Because of the high temperature at the outlet of air compressor, afterfogging has a potential of improved recuperation of exhaust heat than inlet fogging. Thermodynamic analysis model of the gas turbine system is developed by using an ideal gas assumption. Using the model, the effects of pressure ratio, water injection ratio, and ambient temperature are investigated parametrically on thermal efficiency and specific power of the cycle. The dependency of pressure ratio giving peak thermal efficiency is also investigated. The results of numerical computation for the typical cases show that the regenerative gas turbine system with afterfogging can make a notable enhancement of thermal efficiency and specific power. In addition, the peak thermal efficiency is shown to decrease almost linearly with ambient temperature.

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Multi-Land (이종 표면을 갖는 실의 특성해석)

  • Ha, Tae Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.447-452
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that leakage is increasing and rotordynamic stability is decreasing as increasing the length of smooth land part in the honeycomb/smooth land seal.

  • PDF

Characteristics of Leakage and Rotordynamic Coefficients for Annular Seal with Honeycomb/Smooth Land (Honeycomb/Smooth 표면을 갖는 비접촉 환상 실의 특성해석)

  • Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.4 s.17
    • /
    • pp.40-46
    • /
    • 2002
  • An honeycomb/smooth land seal alternating with the honeycomb seal is suggested for structural enhancement in high pressure turbomachinery. Governing equations are derived for an honeycomb/smooth land annular gas seal based on Hirs' lubrication theory and Moody's friction factor model for smooth land and empirical friction factor model for honeycomb land. By using a perturbation analysis and a numerical integration method, the governing equations are solved to yield leakage and the corresponding dynamic coefficients developed by the seal. Theoretical results show that the leakage increases and rotordynamic stability decreases as increasing the length of smooth land part in the honeycomb/smooth land seal.