• Title/Summary/Keyword: high precision machine tool

Search Result 396, Processing Time 0.025 seconds

An analysis on the surface roughness and residual stress of SUS-304 using abrasive film polishing (Abrasive Film Polishing을 이용한 SUS-304의 표면거칠기·잔류응력 분석)

  • Shin, Bong-Cheol;Kim, Byung-Chan;Lim, Dong-Wook;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.16-21
    • /
    • 2018
  • Recently, as the demand for high-precision parts increases due to industrial development, a machine tool system for ultra-precision machining and polishing has been actively developed. As a result, there is an increasing demand for ultra-precision surface roughness along with dimensional processing. However, due to the increase in processing time due to the demand for ultra-precise surfaces and enormous facility investment, it is difficult to secure competitiveness. The polishing process using the abrasive film in super precision machining has been applied to machines, electronic devices, aerospace, and medical fields. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Also, application of industrial field is increasing due to advantages such as low noise and low dust. Recently, researches on stainless steel having strong resistance to corrosion, heat resistance, heat resistance, toughness and weldability have been actively conducted with respect to the nuclear energy industry or marine development. Therefore, in this study, surface roughness and residual stress were measured after SUS304 polishing using dynamic analysis of film polishing apparatus and polishing film.

Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes (마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계)

  • Lee, Kwang-Jo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF

A Study on Machining of a Compressor Rotor using Formed Tools (총형공구를 이용한 압축기 로터 가공에 관한 연구)

  • Park S.Y.;Lim P.;Lee H.K.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1285-1288
    • /
    • 2005
  • Screw rotors, the key parts of screw compressors, are used in compressing air and refrigerant due to their high productivity, compact size, low noise and maintenance. In general, a screw compressor is composed of a pair of rotors of complex geometric shape. The manufacturing cost of the screw rotors is high because the complicated helical shapes of the screw rotors are manufactured usually by the dedicated machine tools. In this study, rotor profile is divided into three parts for the efficient machining. The formed tools are designed and shared for the respective split region. By cutting the screw rotor using the formed tools, this method is more efficient than the end mill in machining rotor. Experimental results show that 4-axis machining using formed tools needs less time and has the accuracy.

  • PDF

Minimization of Surface Roughness for High Speed Machining by Surface Fitting (곡면 Fitting을 이용한 고속가공 표면거칠기의 최소화)

  • Jung Jong-Yun;Cho Hea-Young;Lee Choon-Man;Moon Dug-Hee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.2
    • /
    • pp.37-43
    • /
    • 2004
  • High speed machining is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. It reduces machining time because of the high feed and the high speed of a spindle. In addition it gets rid of post processes for high precision machining. When the high speed machining is applied to especially hardened steel, operators should select the proper parameters of machining. This can produce machining surfaces which is qualified with good surface roughness. This paper presents a method for selecting machining parameters to minimize surface roughness with high speed machining in cutting the hardened steels. Experimental data for surface roughness are collected in a machining shop based on the cutting feed and the spindle rotation. The data fits in hi-cubic polynomial surface of mathematical form. From the model this research minimize the surface roughness to find the optimal values of the feed and the spindle speed. This paper presents a program which automatically generates optimal solutions from the raw data of experiments.

A study on the effect of clearance on shear surfac shape during shaving processing of high strength steel plate (SPFH590) using CAE (CAE를 활용한 고강도강판(SPFH590)의 셰이빙 가공 시 클리어런스가 전단면 형상에 미치는 영향에 관한 연구)

  • Si-Myung Sung
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.23-28
    • /
    • 2024
  • The automobile industry is a wide range of related industries, including parts manufacturing and vehicle assembly, press processing is an essential element in making automobiles. Press processing is a processing method for metal sheets that has relatively high dimensional and shape precision and is suitable for mass production. It refers to processing by attaching a special tool, a mold, to a press machine. Recently, the automobile industry is attempting to reduce the weight of automobiles in order to reduce carbon emissions due to global warming, and the use of high-strength steel sheets, which are lighter than general structural steel sheets, is a natural trend. Shear processing is required to use high-strength steel, and the shape of the shear surface created by shear processing has a significant impact on the quality of the automobile. Therefore, various methods are being attempted to improve the share surface during shear processing. Among them, shaving processing is a method of shearing the primary shearing area again, and it is difficult to obtain an accurate answer because complex deformation occurs in the microscopic shear area. Therefore, in this study, the effect of machining allowance on shaving processing was analyzed using the finite element method using high-strength steel plate (SPFH590), and the differences were compared and examined through actual experiments under the same conditions.

Position and Velocity Control of AM1 Robot Using Self-Organization Fuzzy Control Technology (자기구성 퍼지 제어기법에 의한 AM1 로봇의 위치 및 속도 제어)

  • 김종수;최석창;이종붕;김치원;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.550-555
    • /
    • 2002
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller or the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed for a hierarchical control structure consisting of basic level and high level that modify control rules.

  • PDF

A study on the Design of Bidirectional Actuator using NITINOL (NITINOL을 이용한 차동식 액츄에이터의 설계에 관한 연구)

  • 정상화;김현욱;신형성;차경래;신병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.670-674
    • /
    • 2002
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF

A study on the Improvement of the Performance of Bidirectional SMA Actuator (차동식 형상기억합금 액츄에이터의 동작성능향상을 위한 연구)

  • 정상화;김현욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.155-159
    • /
    • 2004
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dydnamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However the research for dynamic characteristics is very deficient. In this paper, the helical suing are fabricated with NiTi SMA wire of high resistivity. The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidicrectional actuator was fabricated and experimented for its performance.

  • PDF

A study on Bidirectional NiTi-Shape Memory Alloy Actuator (차동식 NiTi-형상기억합금 액츄에이터의 동특성연구)

  • 정상화;김현욱;장우양;김경석;신현성;차경래;나윤철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.75-79
    • /
    • 2001
  • In the recent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. The dynamic characteristic analysis of SMA is necessary for actuator application and many common researches report the material characteristics of SMA sufficiently. However, the research on dynamic characteristics is very deficient. In this paper, the helical spring are fabricated with NiTi SMA wire of high resistivity, The force, response speed, temperature, and displacement are measured by digital force gauge, infrared thermometer, and laser displacement sensor so that the dynamic characteristics of this SMA is analyzed. Also, bidirectional actuator was fabricated and experimented for its performance.

  • PDF

A Study on the Laser Measurement Experiment for Performance Advancement of Tilting Index Table (틸팅 인덱스 테이블의 성능 향상을 위한 레이저 측정 실험에 관한 연구)

  • Kim, Kwang-Sun;Lee, Tae-Ho;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.26-30
    • /
    • 2011
  • Currently, many researches are carried out about tilting index table, which is one of the main component of 5-axis machine tool. The performance of the tilting index table is associated the rotational accuracy which is very important factor for high precision machining because it have an effect on machining error. In this paper, a tilting index table is developed, and the rotational accuracy of the tilting index table using a laser measurement equipment is measured. In addition, a correction value is obtained from the measured value through compensation, and the correction value is used to improve the accuracy of the table. Comparative analysis is carried out for the accuracy of the table before and after compensation. This paper can be used by a reference for performance and reliability advancement of tilting index table.