• Title/Summary/Keyword: high power property

Search Result 502, Processing Time 0.023 seconds

Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts

  • Guo, Quanquan;Wang, Shaoxu;Chen, Shenggang;Sun, Yunlong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1051-1065
    • /
    • 2020
  • Safety analysis of nuclear power plant (NPP) especially in accident conditions is a basic and necessary issue for applications and commercialization of reactors. Many previous researches and development works have been conducted. However, most achievements focused on the safety reliability of primary pressure system vessels. Few literatures studied the structural safety of huge concrete structures surrounding primary pressure system, especially for the fourth generation NPP which allows existing of through cracks. In this paper, structural safety reliability of concrete structures of HTR-PM in accidental double-ended break of hot gas ducts was studied by Exceedance Probability Method. It was calculated by Monte Carlo approaches applying numerical simulations by Abaqus. Damage parameters were proposed and used to define the property of concrete, which can perfectly describe the crack state of concrete structures. Calculation results indicated that functional failure determined by deterministic safety analysis was decided by the crack resistance capability of containment buildings, whereas the bearing capacity of concrete structures possess a high safety margin. The failure probability of concrete structures during an accident of double-ended break of hot gas ducts will be 31.18%. Adding the consideration the contingency occurrence probability of the accident, probability of functional failure is sufficiently low.

THE EFFECT OF THE HIGH DENSITY PLASMA ON THE DIAMOND-LIKE CARBON FILMS

  • Kim, H.;D.H. Jung;Park, B.;K. C. Yoo;Lee, J. J.;J. H. Joo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.54-54
    • /
    • 2003
  • DLC films were deposited on Si(100) substrates by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD). A mixture of acetylene (C$_2$H$_2$) and argon (Ar) gases was used as the precursor and plasma source, respectively. The structure of the films was characterized by the Raman spectroscopy. Results from the Raman spectroscopy analysis indicated that the property change of the DLC films is due to the sp$^3$ and sp$^2$ ratio in the films under various conditions such as ICP power, working pressure and RF substrate bias. The hydrogen content in the DLC films was determined by an electron recoil detector (ERB). The roughness of the films was measured by atomic force microscope (Am). A microhardness tester was used for the hardness and elastic modulus measurement. The DLC film showed a maximum hardness of 37㎬. In this work, the relationship between deposition parameters and mechanical properties were discussed.

  • PDF

Revaluation of Inelastic Structural Response Factor for Seismic Fragility Evaluation of Equipment (기기의 지진취약도 평가를 위한 구조물 비탄성구조응답계수의 재평가)

  • Park, Junhee;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • There are a lot of equipment related to safety and electric power production in nuclear power plants. The structure and equipment in NPPs were generally designed considering a high safety factor to remain in the elastic zone under earthquake load. However it is needed to revaluate the seismic capacity of the structure and equipment as the magnitude of earthquake was recently increased. In this study the floor response due to the nonlinear behaviors of structure was analyzed and the inelastic structural response factor was calculated by the nonlinear time history analysis. The inelastic structural response factor was calculated by the EPRI method and the nonlinear analysis method to realistically evaluate the seismic fragility for the equipment. According to the analysis result, it was represented that the inelastic structural response factor was affected by the natural frequency of equipment, the location of equipment and the dynamic property of structure.

The Physicochemical Characteristics and Antioxidant Properties of Commercial Nurungji Products in Korea (국내 시판 누룽지의 물리화학적 특성 및 항산화 성질 연구)

  • Yang, Ji-won;Choi, Il Sook
    • Korean journal of food and cookery science
    • /
    • v.32 no.5
    • /
    • pp.575-584
    • /
    • 2016
  • Purpose: Nurungji is a traditional Korean food made by yellowish scorched rice. After getting gelatinization of rice, a thin crust of scorched rice will usually be left in the bottom of the traditional cooking pot. In this study, physicochemical characteristics and antioxidant properties of five commercial nurungji products (CNP1, CNP2, CNP3, CNP4, and CNP5) were evaluated. Methods: Physicochemical properties of the five commercial nurungji products were evaluated with AOAC method. The antioxidant activities were assessed using the 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2-azinobis-(3-ethyl-benozothia zoline-6-sulfonic acid)(ABTS), ferric reducing antioxidant power (FRAP), and reducing power assays. Results: Water content was the highest in CNP3, followed by CNP1, CNP2, CNP5, and CNP4. Crude ash content of all nurungji was less than 1%. In Hunter color parameter, the significantly highest a value (redness) and b value (yellowness) were measured in the CNP4 product, meanwhile the lowest in CNP3 (p<0.05). The nurungji products of CNP4 and CNP5 had the significantly higher content in total polyphenols and total flavonoids, compared to those of other products. CNP3 and CNP2 had the lowest in total polyphenols and total flavonoids, respectively. CNP4 and CNP5 products showed the significantly higher values in antioxidant activities, whereas CNP3 had the lowest activity. Conclusion: The high value of antioxidant activities in CNP4 and CNP5 might have been affected primarily by the total polyphenols with increasing browning color during the heat treatment.

Heat Sink of LED Lights Using Engineering Plastics (엔지니어링 플라스틱의 LED조명 방열판 적용)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • As an advance study for the development of a heat sink for special purpose high power illumination, an investigation was made to find feasibility for the application of copper plated EP to a heat sink of small LED light of less than 10W installed in commercial product. In this study, the plated heat sink with EP copper was fabricated for the conventional LED light. It was used actually for finding heat radiation property and effectiveness of the heat sink accompanied with measurement of luminous intensity. The heat is radiated by transfer and dissipation only through the copper plated surface due to extremely low heat conductivity of EP in case of EP heat sink; however the total area of the plate plays the function of heat transfer as well as heat radiation in case of the aluminum heat sink. It seems that the volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W even though heat transfer rate of copper is approximately 1.9 times higher than that of aluminum. It was thought that this is useful to utilize for heat sink for low power LED light with the low heating rate. Also, the illumination could be greatly influenced by the surrounding temperature of the place where it is installed. Therefore, it seems that the illumination installation environment must be taken into consideration when selecting illumination. Further study was expected on order to aims at development of an exterior surface itself made into heat radiation plate by application of this technology in future.

Access timing offsets-resilient SC-FDMA (접속동기 오차에 강한 SC-FDMA 기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.26-29
    • /
    • 2012
  • In this paper, we propose a Single Carrier Frequency Division Multiple Access(SC-FDMA) scheme with greatly enhanced tolerance of timing offset among the users. The type of the proposed scheme is similar to code spread Multiple Carrier Direct Spread Code Division Multiple Access(MC DS CDMA). The proposed scheme performs partial Discrete Fourier Transform(DFT) in order to solve high Peak to Average Power Ratio(PAPR) of the MC DS CDMA before Inverse Fast Fourier Transform(IFFT). Exploiting the property Properly Scrambled Walsh-Hadamard(PSW) code has zero correlation despite ${\pm}1$ chip timing offset, the proposed scheme achieves Multiple Access Interference free performance with the timing offset up to ${\pm}1$ OFDM symbol duration with low PAPR. In contrast, the other existing schemes in comparison undergo severe performance degradation even with small timing offset in multipath fading channel.

Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

Local Community Development Model Building Study after Radioactive waste disposal facility Siting on GyeongJu (방사성 페기물 처분장 입지 후 지역 변화 모델 구축)

  • Oh, Young-Min;Yu, Jae-Kook
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.119-146
    • /
    • 2006
  • City of Gyeongju's referendum finally offered the long-waited low-level radioactive waste disposal site in November 2005. Gyeongju's positive decision was due to the various economic rewards and incentives the national government promised to the city. 300 million won for an accepting bonus, 8.5 billion won, annual revenue fro the entry quantity of waste into the city's disposal site, the location of the headquarter building of the Korean Hydro and Nuclear Power Co., and the accelerator research center. All of the above will affect the city's infrastructure and the citizens' economic and cultural lives. Population, land use, economic structure, environment and quality of life will be affected. Some will be very positive, and some will be positive. This research project will see the future of the city and forecast the demographic, economic, physical and environmental changes of the city via computer simulation's system dynamics technique. This kind of simulation will help City of Gyeongju's what to prepare for the future. The population forecasting of the year 2026 will be 289,069 with the waste disposal site, and 279,131 without the waste disposal site in Gyeongju. The waste disposal site and the relocation of the company headquarters and location of the accelerator research center will attract 9,938 individuals more with 511 manufacturing shops and 1944 service jobs. The population increase will bring 3,550 more houses constructed in the city. Land use will also be affected. More land will be developed. However, mad, water plant and waste water plant will not be expanded as much. The city's financial structure will be expanded, due to the increased revenues from the waste disposal site, and property tax revenues from the middle-class employees of the company, and the high-powered scientists and technologists from the accelerator research center. All in an, the future of the city will be brighter after operating the nuclear waste disposal site inside the city.

  • PDF

An Experimental Study on the Characteristics of Electrochemical Reactions of RDF/RPF in the Direct Carbon Fuel Cell (직접탄소 연료전지에서 RDF 및 RPF의 전기화학반응 특성에 관한 실험적 연구)

  • Ahn, Seong Yool;Rhie, Young Hoon;Eom, Seong Yong;Sung, Yeon Mo;Moon, Cheor Eon;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.5
    • /
    • pp.513-520
    • /
    • 2012
  • The electrochemical reaction of refuse derived fuel (RDF) and refuse plastic/paper fuel (RPF) was investigated in the direct carbon fuel cell (DCFC) system. The open circuit voltage (OCV) of RPF was higher than RDF and other coals because of its thermal reactive characteristic under carbon dioxide. The thermal reactivity of fuels was investigated by thermogravimetric analysis method. and the reaction rate of RPF was higher than other fuels. The behavior of all sample's potential was analogous in the beginning region of electrochemical reactions due to similar functional groups on the surface of fuels analyzed by X-ray Photoelectron Spectroscopy experiments. The potential level of RDF and RPF decreased rapidly comparing to coals in the next of the electrochemical reaction because the surface area and pore volume investigated by nitrogen gas adsorption tests were smaller than coals. This characteristic signifies the contact surface between electrolyte and fuel is restricted. The potential of fuels was maintained to the high current density region over 40 $mA/cm^2$ by total carbon component. The maximum power density of RDF and RPF reached up to 45~70% comparing to coal. The obvious improvement of maximum power density by increasing operating temperature was observed in both refuse fuels.

Hydrophobic Properties of PTFE Film Deposited on Glass Surface Etched by Ar-plasma (아르곤 플라즈마를 이용하여 유리기판에 증착된 PTFE 박막의 초친수 특성 연구)

  • Rhee, Byung Roh;Bae, Kang;Kim, Hwa-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.516-521
    • /
    • 2014
  • An excellent hydrophobic surface has a high contact angle over 147 degree and the contact angle hysteresis below $5^0$ was produced by using roughness combined with hydrophobic PTFE coatings, which were also confirmed to exhibit an extreme adhesion to glass substrate. To form the rough surface, the glass was etched by Ar-plasma. A very thin PTFE film was coated on the plasma etched glass surface. Roughness factors before or after PTFE coating on the plasma etched glass surface, based on Wensel's model were calculated, which agrees well with the dependence of the contact angle on the roughness factor is predicted by Wensel's model. The PTFE films deposited on glass by using a conventional rf-magnetron sputtering. The glass substrates were etched Ar-plasma prior to the deposition of PTFE. Their hydrophobicities are investigated for application as a anti-fouling coating layer on the screen of displays. It is found that the hydrophobicity of PTFE films mainly depends on the sputtering conditions, such as rf-power, Ar gas content introduced during deposition. These conditions are closely related to the deposition rate or thickness of PTFE film. Thus, it is also found that the deposition rate or the film thickness affects sensitively the geometrical morphology formed on surface of the rf-sputtered PTFE films. In particular, 1,950-nm-thick PTFE films deposited for 30 minute by rf-power 50 watt under Ar gas content of 20 sccm shows a very excellent optical transmittance and a good anti-fouling property and a good durability.