• Title/Summary/Keyword: high power factor

Search Result 1,901, Processing Time 0.04 seconds

The Current Control Methods Comparison of Boost Converter for Unity Power Factor (단위 역률 구현을 위한 부스트 컨버터의 전류제어방식 비교)

  • 최재동;성세진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.67-73
    • /
    • 1998
  • In this paper, the BPFC(Boost Power Factor Collection) method is proposed to improve power factor and harmonic distortion. This method not only reduces the current and voltage distortion but also the physical size and brings expected high efficiency through current control methods. And the proposed BPFC has a distinct difference by control methods. The BPFC method proposed in this study has the characteristic of the high power factor and low harmonic distortion, and the control method using the peak current control and PWM average current control is comparative.

  • PDF

A Study on Characteristic Estimation of Single-Stage High Frequency Resonant DC-DC (단일 전력단 고주파 공진 DC-DC 컨버터의 특성평가에 관한 연구)

  • Won, Jae-Sun;Park, Jae-Wook;Nam, Seung-Sik;Sim, Kwang-Yeal;Lee, Bong-Seob;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.318-320
    • /
    • 2003
  • This paper presents a novel single-stage high frequency resonant DC-DC converter using zero voltage switching with high input power factor. The proposed high frequency resonant converter integrates half-bridge boost rectifier as power factor corrector (PFC) and half-bridge resonant converter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode(DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the Proposed DC-DC converter. This proposed converter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A Study on Isolated DCM Converter for High Efficiency and High Power Factor

  • Kwak, Dong-Kurl
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.477-483
    • /
    • 2010
  • This paper is studied on a novel buck-boost isolated converter for high efficiency and high power factor. The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit makes use of a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuit and reduces a number of control components. The input ac current waveform in the proposed converter becomes a quasi sinusoidal waveform in proportion to the magnitude of input ac voltage under constant switching frequency. As a result, it is obtained by the proposed converter that the switching power losses are low, the efficiency of the converter is high, and the input power factor is nearly unity. The validity of analytical results is confirmed by some simulation results on computer and experimental results.

High Efficiency and High Power-Factor Power Supply for LED Lighting Equipment (고효율 고역률 LED 조명장치용 전원공급장치)

  • Jeong, Gang-Youl
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.23-34
    • /
    • 2018
  • This paper presents the high efficiency and high power-factor power supply for LED lighting equipment. The proposed power supply is the single-stage power structure consisted of the full-bridge diode rectifier and flyback converter, and thus the power-factor correction and output voltage regulation are performed simultaneously using only one controller IC and one power semiconductor switch. Furthermore, the proposed power supply reduces the voltage stress and switching loss of main switch using the regenerative snubber, and it improves the system efficiency using the synchronous rectifier. The applied synchronous rectifier is the new voltage-driven type and its operation and construction are simple. In this paper, the operation principle of proposed power supply is explained through the operation analyses of its power-factor correction and main power conversion parts and the operation of synchronous rectifier is described, briefly. Also, a design example of the power circuit of 40W-class prototype is shown and the operation characteristics of proposed power supply are validated through the experimental results of the implemented prototype by the designed circuit parameter.

High efficiency and power factor 48V/100A DC power supply of three-phase single stage method (3상 Single Stage 방식의 48V/100A급 고효율 고역률 직류 전원장치)

  • Park, J.Y.;Kim, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.430-432
    • /
    • 2005
  • This paper presents a novel, single stage, isolated, three-phase switching rectifier capable of switching at high frequency. The circuit topology Provides zero-voltage switching for all switches, output voltage regulation, unity input power factor, all in a single power conversion stage. Operating principle and experimental results in the 48V/100A DC power supply of three-phase single stage method are presented.

  • PDF

The Inductor Characteristics of the PFC Converter for Wireless Power Transfer Inverter (무선전력전송 인버터 전원용 PFC 컨버터의 인덕터 특성)

  • LIM, Seongjin;KIM, Changsun
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.534-535
    • /
    • 2012
  • The characteristics of wireless power transfer is achieved at high frequencies in short range magnetic resonant wireless power transfer system. Use PFC pre-regulator for power supply of high frequency inverter. Supplied power to high power factor and high efficiency. Accordingly, the input voltage is 110V-220V. The designed of 175W Class with the output voltage of 385V. As a experiment result, maximum power factor and maximum efficiency measured 99% and 97% respectively. Therefore, in this paper, the design of a inductor which is the most important element in PFC converter for short range magnetic resonance wireless power transfer system was studied. Used an CS330125 core through the designed of 175W class. Examination results power loss was 0.2%.

  • PDF

Soft Switching High Power Factor Buck Converter (Soft Switching방식 고역률 강압형 컨버터)

  • 구헌회;조기연
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.243-246
    • /
    • 1997
  • In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, a input capacitor can be small enough to filter input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn of of the switching device is a zero current switching(ZCS) and high power factor input is obtained. In addition, zero voltage switching(ZVS) at turn of is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontious conduction mode operation.

  • PDF

High Power Factor Low Torque Ripple Drive Scheme of Single-Phase SRM based on Mathematical Model (수학적 모델을 기반으로 한 단상 SRM의 고역률 저토크리플 구동방식)

  • Liang, Jianing;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.103-106
    • /
    • 2007
  • This paper presents single-phase SRM drive system with single-stage high power factor and low torque ripple. Single-phase SRM has simple mechanical and electrical structure, robust and high speed operation characteristic. But conventional SRM drive with diode bridge rectifier and filter capacitor has a low power factor because of short charge time of capacitor. Therefore, this paper presents a novel single-phase SRM drive with single-stage structure circuit, which can improve the power factor and reduce peak torque ripple. A novel switching topology is presented base on mathematical analysis. The novel drive method is verified by simulations and experiments.

  • PDF

Study of Single-Stage High-Power-Factor Electronic Ballast for fluorescent lamps operating in critical conduction mode (임계모드에서 동작하는 단일 전력단을 갖는 고역률 형광등용 전자식 안정기에 관한 연구)

  • Seo, C.S.;Kim, D.H.;Byun, Y.B.;Lee, P.S.;Sim, K.Y.;Oh, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1126-1128
    • /
    • 2001
  • A single-stage high-power-factor electron ic ballast operating in critical conduction mode is presented in this paper. The proposed topology is based on integration of a boost-like converter and a LCC Type half-bridge serial resonant inverter. The power-factor-correction(PFC) stage is a boost-like converter operating in critical conduction mode for positive and negative half cycle voltage respectively at line frequency (60Hz) so that a high power factor is achieved naturally. The simulated and experimental results for 100w fluorescent lamps operating at 42kHz switching frequency and 220V line voltage have been obtained.

  • PDF

High-Power-Factor Boost Rectifier with a Passive Lossless Snubber (무손실 수동스너버를 갖는 고역율 부스트 정류기)

  • 김만고
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.617-625
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is implemented with a MOSFET, is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. These equivalent circuits are analyzed so that the overshoot voltage across the main switch, the snubber current, and the turn-off transition time can be predicted analytically. From these results, the normalized overshoot voltage is reduced to 1 as $_W2T_on$ varies from zero to $\pi$/2, and then it is fIxed at 1 for $_W2T_on$> $\pi$/2. The peak snubber inductor current is directly proportional to the input current. The turn-offtransition time wltoffvaries from 0 to 2.57, depending on $_W2T_on$. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF