• Title/Summary/Keyword: high polymer material

Search Result 894, Processing Time 0.029 seconds

A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials

  • Park, Dabin;Kim, Jooheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.203-214
    • /
    • 2022
  • Thermoelectric (TE) heating and cooling devices, which are able to directly convert thermal energy into electrical energy and vice versa, are effective and have exhibited a potential for energy harvesting. With the increasing consumer demands for various wearable electronics, organic-based TE composite materials offer a promise for the TE devices applications. Conductive polymers are widely used as flexible TE materials replacing inorganic materials due to their flexibility, low thermal conductivity, mechanical flexibility, ease of processing, and low cost. In this review, we briefly introduce the latest research trends in the flexible TE technology and provide a comprehensive summary of specific conductive polymer-based TE material fabrication technologies. We also summarize the manufacture for high-efficiency TE composites through the complexation of a conductive polymer matrix/inorganic TE filler. We believe that this review will inspire further research to improve the TE performance of conductive polymers.

A Study on the Long-Term Integrity of Polymer Concrete for High Integrity Containers

  • Young Hwan Hwang;Mi-Hyun Lee;Seok-Ju Hwang;Jung-Kwon Son;Cheon-Woo Kim;Suknam Lim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.411-417
    • /
    • 2023
  • During the operation of a nuclear power plant (NPP), the generation of radioactive waste, including dry active waste (DAW), concentrates, spent resin, and filters, mandates the implementation of appropriate disposal methods to adhere to Korea's waste acceptance criteria (WAC). In this context, this study investigates the potential use of polymer concrete (PC) as a high-integrity container (HIC) material for solidifying and packaging these waste materials. PC is a versatile composite material comprising binding polymers, aggregates, and additives, known for its exceptional strength and chemical stability. A comprehensive analysis of PC's long-term integrity was conducted in this study. First, its compressive strength, which is crucial for ensuring the structural stability of HICs over extended periods, was evaluated. Subsequently, the resilience of PC was tested under various stress conditions, including biological, radiological, thermal, and chemical stressors. The findings of this study indicate that PC exhibits remarkable long-term properties, demonstrating exceptional stability even when subjected to diverse stressors. The results therefore underscore the potential viability of PC as a reliable material for constructing high-integrity containers, thus contributing to the safe and sustainable management of radioactive waste in NPPs.

Dielectric Properties of Polymer-ceramic Composites for Embedded Capacitors

  • Yoon, Jung-Rag;Han, Jeong-Woo;Lee, Kyung-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.116-120
    • /
    • 2009
  • Ceramic-polymer composites have been investigated for their suitability as embedded capacitor materials because they combine the processing ability of polymers with the desired dielectric properties of ceramics. This paper discusses the dielectric properties of the ceramic ($BaTiO_3$)-polymer (Epoxy) composition as a function of ceramic particle size at a ceramic loading of 40 vol%. The dielectric constant of these ceramic-polymer composites increases as the powder size decreases. Results show that ceramic-polymer composites have a high dielectric constant associated with the $BaTiO_3$ powder with a 200 nm particle size, high insulation resistance, high breakdown voltage (> 22 KV/mm), and low dielectric loss (0.018-0.024) at 1 MHz.

The investigation of tracking resistant sheath material for ADSS Optic cable (ADSS 광 케이블 시스용 내 트래킹 재료의 특성에 관한 연구)

  • Lee, Jung-Hee;Seo, Il-Gun;Whang, Sun-Ho;Lee, Gun-Joo;Bak, Seung-Yup;Kim, Kyeung-Min;Lee, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.102-105
    • /
    • 2002
  • ADSS(All Dielectirc Self-Supporting) cable installed under high voltage power cable line suffers a variety of environmental influence, rain, wind, snow fall, chemical pollution, salt fog and electrical stress. Its lifetime is required to be at least 20 years with this harsh weathering condition. The electrical stress under high voltage power line gives rise to dry band arcing and tracking, the severest damage, on the outer sheath of cable. Finally tracking might penetrate sheath and cause the break-down of ADSS cable. Tracking resistant sheath material, therefore, should be used to protect the core of ADSS from dry band arcing and to be sure long lifetime. In this work, we discuss various commercial tracking resistant material to investigate the way of track resistance and compare their mechanical, electrical, weathering and tracking properties through serial experiments. We found track resistant material is categorized into two main type : polyethylene with metal hydroxide and polyethylene with reduced carbon black. The Liquid contaminant, Inclined plane Tracking and Erosion test says the time to track of tracking resistant material with metal hydroxide has a little longer time to track in the high applied voltage than that with carbon black, but mechanical and weathering properties were inferior to.

  • PDF

$CsN_3$ as an air stable and low temperature evaporable novel n doping material for high efficiency and low driving voltage in organic light-emitting diodes

  • Lee, Jun-Yeob;Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Lee, Tae-Woo;Noh, Tae-Yong;Yang, Haa-Jin;Kang, Sung-Kee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1319-1322
    • /
    • 2008
  • $CsN_3$ was developed as a novel n doping material with air stability and low deposition temperature. Evaporation temperature of $CsN_3$ was similar to that of common hole injection material and it worked well as a n dopant in electron transport layer. Driving voltage was lowered and high power efficiency was obtained in green phosphorescent devices by using $CsN_3$ as a dopant in electron transport layer. It could also be used as a charge generation layer in combination with $MoO_3$. In addition, n doping mechanism study revealed that $CsN_3$ is decomposed into Cs and $N_2$ during evaporation. This is the first work reporting air stable and low temperature evaporable n dopant in organic light-emitting diodes.

  • PDF

2D Coordination Polymer Derived Co3O4 Nanocrystals as High Performance Anode Material of Lithium-Ion Batteries

  • Wen, Hao;Shi, Changdong;Gao, Yuanrui;Rong, Hongren;Sha, Yanyong;Liu, Hongjiang;Liu, Qi
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850139.1-1850139.10
    • /
    • 2018
  • $Co_3O_4$ nanocrystals have been synthesized via an ordinary one-step calcination of a cobalt-based 2D coordination polymer [Co(tfbdc)(4,4'-bpy)$(H_2O)_2$]. As an anode material for lithium-ion batteries, the obtained $Co_3O_4$ nanocrystals exhibit high reversible capacity, excellent cyclic stability and better rate capability. The reversible capacity of the $Co_3O_4$ nanocrystals maintains $713mA\;h\;g^{-1}$ after 50 cycles at a current density of $50mA\;g^{-1}$. Our results confirm that searching for metal oxides nanomaterials used as anode materials of lithium ion batteries via the calcinations of 2D coordination polymer is a new route.

Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent (계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가)

  • Cho, Han-Goo;Lee, Un-Yong;Han, Dong-Hee;Kang, Sung-Hwa;Choi, In-Hyuk;Lim, Kee-Joe
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.62-67
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. Polymer material is also investigated it's tracking resistance by adding surface active agent in IEC 587. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination, STRI guide and thermal image camera.

Positive Type Photoresist for Patterning of Interdielectric Layer of TFT Array

  • Lee, Hyo-Jung;Kim, Hyo-Jin;Kim, Soon-Hak;Park, Lee-Soon;Lee, Yun-Su;Song, Gab-Deuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.564-566
    • /
    • 2007
  • Synthesis of two photoactive compounds containing core imide moiety was carried out for an application to interdielectric layer in TFTLCD array. An aqueous alkaline developable polymer matrix was synthesized by free radical copolymerization. A positive photoresist formulation was developed utilizing synthesized UV monomers, photoactive compound, binder polymer, sulfactant and alkali developable polymer matrix. It was found that via-holes with good resolution, high transmittance and thermal resistance could be obtained by photolithographic process utilizing the new positive interdielectric material with high thermal stability.

  • PDF

LiNbO3 integrated optic devices with an UV-curable polymer buffer layer

  • Jeong, Woon-Jo;Kim, Seong-Ku;Park, Gye-Choon;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.111-118
    • /
    • 2002
  • A new lithium niobate optical modulator with a polymer buffer layer on Ni in-diffused optical waveguide is proposed for the fist time, successfully fabricated and examined at a wavelength of 1.3 mm. By determining the diffusion parameters of Ni in-diffused waveguide to achieve more desirable mode size which is well matched to the mode in the fiber, the detailed results on the achievement of high optical throughput are reported. In addition, the usefulness of polymer buffer layer which can be applicable to a buffer layer in Ni in-diffused waveguide devices is demonstrated. Several sets of channel waveguides fabricated on Z-cut lithium niobate by Ni in-diffusion were obtained and on which coplanar traveling-wave type electrodes with a polymer-employed buffer layer were developed by a conventional fabrication method for characterizing of electro-optical performances of the proposed device. The experimental results show that the measured half-wave voltage is of ~10 V and the total measured fiber-to-fiber insertion loss is of ~6.4 dB for a 40 mm long at a wavelength of =1.3 mm, respectively. From the experimental results, it is confirmed that the polymer-employed buffer layer in LiNbO3 optical modulator can be a substitute material instead of silicon oxide layer which is usually processed at a high temperature of over $300^{\circ}C$. Moreover, the fabrication tolerances by using polymer materials in LiNbO3 optical modulators are much less strict in comparison to the case of dielectric buffer layer.

  • PDF

Manipulating Anisotropic Filler Structure in Polymer Composite for Heat Dissipating Materials: A Mini Review (방열소재로의 응용을 위한 고분자 복합소재 내 이방성 필러 구조 제어 연구동향)

  • Seong-Bae, Min;Chae Bin, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.431-438
    • /
    • 2022
  • Efficient heat dissipation in current electronics is crucial to ensure the best performance and lifespan of the devices along with the users' safety. Materials with high thermal conductivity are often used to dissipate the generated heat from the electronics to the surroundings. For this purpose, polymer composites have been attracted much attention as they possess advantages rooted from both polymer matrix and thermally conductive filler. In order to meet the thermal conductivity required by relevant industries, composites with high filler loadings (i.e., >60 vol%) have been fabricated. At such high filler loadings, however, composites lose benefits originated from the polymer matrix. To achieve high thermal conductivity at a relatively low filler loading, therefore, constructing the heat conduction pathway by controlling filler structure within the composites may represent a judicious strategy. To this end, this review introduces several recent approaches to manufacturing heat dissipating materials with high thermal conductivity by manipulating thermally conductive filler structures in polymer composites.