Browse > Article
http://dx.doi.org/10.7234/composres.2022.35.6.431

Manipulating Anisotropic Filler Structure in Polymer Composite for Heat Dissipating Materials: A Mini Review  

Seong-Bae, Min (School of Chemical Engineering, Pusan National University)
Chae Bin, Kim (School of Chemical Engineering, Pusan National University)
Publication Information
Composites Research / v.35, no.6, 2022 , pp. 431-438 More about this Journal
Abstract
Efficient heat dissipation in current electronics is crucial to ensure the best performance and lifespan of the devices along with the users' safety. Materials with high thermal conductivity are often used to dissipate the generated heat from the electronics to the surroundings. For this purpose, polymer composites have been attracted much attention as they possess advantages rooted from both polymer matrix and thermally conductive filler. In order to meet the thermal conductivity required by relevant industries, composites with high filler loadings (i.e., >60 vol%) have been fabricated. At such high filler loadings, however, composites lose benefits originated from the polymer matrix. To achieve high thermal conductivity at a relatively low filler loading, therefore, constructing the heat conduction pathway by controlling filler structure within the composites may represent a judicious strategy. To this end, this review introduces several recent approaches to manufacturing heat dissipating materials with high thermal conductivity by manipulating thermally conductive filler structures in polymer composites.
Keywords
Thermal interface material; Heat dissipating material; Anisotropic filler; Polymer composite; Thermal conductivity; Filler alignment; 3D network structure;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Moore, A.L., and Shi, L., "Emerging Challenges and Materials for Thermal Management of Electronics," Materials Today, Vol. 17, No. 4, 2014, pp. 163-174.   DOI
2 Han, N., Cuong, T.V., Han, M., Ryu, B.D., Chandramohan, S., Park, J.B., Kang, J.H., Park, Y.-J., Ko, K.B., Kim, H.Y., Kim, H.K., Ryu, J.H., Katharria, Y.S., Choi, C.-J., and Hong, C.-H., "Improved Heat Dissipation in Gallium Nitride Light-Emitting Diodes with Embedded Graphene Oxide Pattern," Nature Communications, Vol. 4, 2013, pp. 1452.
3 Shahil, K.M.F., and Balandin, A.A., "Graphene-Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials," Nano Letters, Vol. 12, No. 2, 2012, pp. 861-867.   DOI
4 Huang, C., Qian, X., and Yang, R., "Thermal Conductivity of Polymers and Polymer Nanocomposites," Materials Science and Engineering: R: Reports, Vol. 132, 2018, pp. 1-22.   DOI
5 Kim, C.B., Lee, J., Cho, J., and Goh, M., "Thermal Conductivity Enhancement of Reduced Graphene Oxide via Chemical Defect Healing for Efficient Heat Dissipation," Carbon, Vol. 139, 2018, pp. 386-392.   DOI
6 Shin, H., Ahn, S., Kim, D., Lim, J.K., Kim, C.B., and Goh, M., "Recyclable Thermoplastic Hexagonal Boron Nitride Composites with High Thermal Conductivity," Composites Part B: Engineering, Vol. 163, 2019, pp. 723-729.   DOI
7 Lee, J., Hwang, S., Lee, S.-K., Ahn, S., Jang, S.G., You, N.-H., Kim, C.B., and Goh, M., "Optimizing Filler Network Formation in Poly(hexahydrotriaizine) for Realizing High Thermal Conductivity and Low Oxygen Permeation," Polymer, Vol. 179, 2019, pp. 121639.
8 Shin, H., Kim, C.B., Ahn, S., Kim, D., Lim, J.K., and Goh, M., "Recyclable Polymeric Composite with High Thermal Conductivity," Composites Research, Vol. 32, No. 6, 2019, pp. 319-326.   DOI
9 Shin, H., and Kim, C.B., "Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites," Composites Research, Vol. 34, No. 1, 2021, pp. 63-69.   DOI
10 Ghosh, B., Xu, F., and Hou, X., "Thermally Conductive Poly(ether ether ketone)/Boron Nitride Composites with Low Coefficient of Thermal Expansion," Journal of Materials Science, Vol. 56, 2021, pp. 10326-10337.   DOI
11 Feng, C.-P., Yang, L.-Y., Yang, J., Bai, L., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B., Lan, H.-B., and Yang, W., "Recent Advances in Polymer-Based Thermal Interface Materials for Thermal Management: A Mini-Review," Composites Communications, Vol. 22, 2020, pp. 100528.
12 Hu, J., Huang, Y., Yao, Y., Pan, G., Sun, J., Zeng, X., Sun, R., Xu, J.-B., Song, B., and Wong, C.-P., "Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN," ACS Applied Materials & Interfaces, Vol. 9, No. 15, 2017, pp. 13544-13553.   DOI
13 Ha, H., Park, J., Ando, S., Kim, C.B., Nagai, K., Freeman, B.D., and Ellison, C.J., "Gas Permeation and Selectivity of Poly(dimethylsiloxane)/Graphene Oxide Composite Elastomer Membranes," Journal of Membrane Science, Vol. 518, 2016, pp. 131-140.   DOI
14 An, F., Li, X., Min, P., Liu, P., Jiang, Z.-G., and Yu, Z.-Z., "Vertically Aligned High-Quality Graphene Foams for Anisotropically Conductive Polymer Composites with Ultrahigh Through-Plane Thermal Conductivities," ACS Applied Materials & Interfaces, Vol. 10, No. 20, 2018, pp. 17383-17392.   DOI
15 Liu, W.C., Chou, V.H.Y., Behera, R.P., and Le Ferrand, H., "Magnetically Assisted Drop-On-Demand 3D Printing of Microstructured Multimaterial Composites," Nature Communications, Vol. 13, 2022, pp. 5015.
16 Liu, J., Li, W., Guo, Y., Zhang, H., and Zhang, Z., "Improved Thermal Conductivity of Thermoplastic Polyurethane via Aligned Boron Nitride Platelets Assisted by 3D Printing," Composites Part A: Applied Science and Manufacturing, Vol. 120, 2019, pp. 140-146.   DOI
17 Kim, C.B., Jeong, K.B., Yang, B.J., Song, J.-W., Ku, B.-C., Lee, S., Lee, S.-K., and Park, C., "Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors," Angewandte Chemie International Edition, Vol. 56, No. 51, 2017, pp. 16180-16185.   DOI
18 Gong, Y., Xu, Z.-Q., Li, D., Zhang, J., Aharonovich, I., and Zhang, Y., "Two-Dimensional Hexagonal Boron Nitride for Building Next-Generation Energy-Efficient Devices," ACS Energy Letters, Vol. 6, No. 3, 2021, pp. 985-996.   DOI
19 Erb, R.M., Libanori, R., Rothfuchs, N., and Studart, A.R., "Composites Reinforced in Three Dimensions by Using Low Magnetic Fields," Science, Vol. 335, No. 6065, 2012, pp. 199-204.   DOI
20 Lei, C., Xie, Z., Wu, K., and Fu, Q., "Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application," Advanced Materials, Vol. 33, No. 49, 2021, pp. 2103495.
21 Wu, W., Ren, T., Liu, X., Davis, R., Huai, K., Cui, X., Wei, H., Hu, J., Xia, Y., Huang, S., Qiang, Z., Fu, K., Zhang, J., and Chen, Y., "Creating Thermal Conductive Pathways in Polymer Matrix by Directional Assembly of Synergistic Fillers Assisted by Electric Fields," Composites Communications, Vol. 35, 2022, pp. 101309.
22 Jiao, W., Shioya, M., Wang, R., Yang, F., Hao, L., Niu, Y., Liu, W., Zheng, L., Yuan, F., Wan, L., and He, X., "Improving the Gas Barrier Properties of Fe3O4/Graphite Nanoplatelet Reinforced Nanocomposites by a Low Magnetic Field Induced Alignment," Composites Science and Technology, Vol. 99, 2014, pp. 124-130.   DOI
23 Lin, Z., Liu, Y., Raghavan, S., Moon, K.-s., Sitaraman, S.K., and Wong, C.-p., "Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation," ACS Applied Materials & Interfaces, Vol. 5, No. 15, 2013, pp. 7633- 7640.   DOI
24 Ma, H., Gao, B., Wang, M., and Feng, Y., "Vertical Alignment of Carbon Fibers under Magnetic Field Driving to Enhance the Thermal Conductivity of Silicone Composites," Polymers for Advanced Technologies, Vol. 32, No. 11, 2021, pp. 4318-4325.   DOI
25 Wu, S., Ladani, R.B., Zhang, J., Bafekrpour, E., Ghorbani, K., Mouritz, A.P., Kinloch, A.J., and Wang, C.H., "Aligning Multilayer Graphene Flakes with an External Electric Field to Improve Multifunctional Properties of Epoxy Nanocomposites," Carbon, Vol. 94, 2015, pp. 607-618.   DOI
26 Yang, J., Tang, L.-S., Bai, L., Bao, R.-Y., Liu, Z., Xie, B.-H., Yang, M.-B., and Yang, W., "Photodriven Shape-Stabilized Phase Change Materials with Optimized Thermal Conductivity by Tailoring the Microstructure of Hierarchically Ordered Hybrid Porous Scaffolds," ACS Sustainable Chemistry & Engineering, Vol. 6, No. 5, 2018, pp. 6761-6770.   DOI
27 Dai, W., Lv, L., Lu, J., Hou, H., Yan, Q., Alam, F.E., Li, Y., Zeng, X., Yu, J., Wei, Q., Xu, X., Wu, J., Jiang, N., Du, S., Sun, R., Xu, J., Wong, C.-P., and Lin, C.-T., "A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods," ACS Nano, Vol. 13, No. 2, 2019, pp. 1547-1554.   DOI
28 Shao, G., Hanaor, D.A.H., Shen, X., and Gurlo, A., "Freeze Casting: From Low-Dimensional Building Blocks to Aligned Porous Structures-A Review of Novel Materials, Methods, and Applications," Advanced Materials, Vol. 32, No. 17, 2020, pp. 1907176.
29 Zeng, X., Yao, Y., Gong, Z., Wang, F., Sun, R., Xu, J., and Wong, C.-P., "Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement," Small, Vol. 11, No. 46, 2015, pp. 6205-6213.   DOI
30 Han, J., Du, G., Gao, W., and Bai, H., "An Anisotropically High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre-Mimetic 3D Network," Advanced Functional Materials, Vol. 29, No. 13, 2019, pp. 1900412.
31 Min, S.-B., Kim, M., Hyun, K., Ahn, C.-W., and Kim, C.B., "Thermally Conductive 2D Filler Orientation Control in Polymer Using Thermophoresis," Polymer Testing, Vol. 117, 2023, pp. 107838.
32 Kim, C.B., Janes, D.W., McGuffin, D.L., and Ellison, C.J., "Surface Energy Gradient Driven Convection for Generating Nanoscale and Microscale Patterned Polymer Films Using Photosensitizers," Journal of Polymer Science Part B: Polymer Physics, Vol. 52, No. 18, 2014, pp. 1195-1202.   DOI
33 Kim, C.B., Janes, D.W., Zhou, S.X., Dulaney, A.R., and Ellison, C.J., "Bidirectional Control of Flow in Thin Polymer Films by Photochemically Manipulating Surface Tension," Chemistry of Materials, Vol. 27, No. 13, 2015, pp. 4538-4545.   DOI
34 Piazza R., "Thermophoresis: Moving Particles with Thermal Gradients," Soft Matter, Vol. 4, No. 9, 2008, pp. 1740-1744.   DOI
35 Kim, C.B., Wistrom, J.C., Ha, H., Zhou, S.X., Katsumata, R., Jones, A.R., Janes, D.W., Miller, K.M., and Ellison, C.J., "Marangoni Instability Driven Surface Relief Grating in an Azobenzene-Containing Polymer Film," Macromolecules, Vol. 49, No. 18, 2016, pp. 7069-7076.   DOI
36 Li, C.H., and Peterson, G.P., "Experimental Studies of Natural Convection Heat Transfer of Al2O3/DI Water Nanoparticle Suspensions (Nanofluids)," Advances in Mechanical Engineering, Vol. 2, 2010, pp. 742739.
37 Tan, Z., Yang, M., and Ripoll, M., "Anisotropic Thermophoresis," Soft Matter, Vol. 13, No. 40, 2017, pp. 7283-7291.   DOI
38 Gittus, O.R., Olarte-Plata, J.D., and Bresme, F., "Thermal Orientation and Thermophoresis of Anisotropic Colloids: The Role of the Internal Composition," The European Physical Journal E, Vol. 42, No. 7, 2019, pp. 90.