• 제목/요약/키워드: high performance steel

검색결과 1,517건 처리시간 0.034초

CFT 구조용 초고강도 콘크리트의 충전성 평가를 위한 실험적 연구 (An Experimental Study on the Evaluation of the Compactness of Super-High Strength Concrete for CFT structure)

  • 이장환;황병준;김제섭;정근호;임남기;정상진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.517-520
    • /
    • 2004
  • Concrete Filled steel Tube pipe structure is a rational type of structure that maximizes performance by combining the strong points of steel frame and concrete. In the structure, the confining effect of steel pipes increases the bearing power of infilled concrete and the strengthening of local bucking of steel pipes by infilled concrete increases the bearing power of members. and these result in the reduction of cross-sectional area and high transformation capacity. Moreover. the structure is economically efficient and widely applicable that it is used from super-high buildings to residential, business and apartment buildings. It enables the construction of multi-story buildings with long spans using columns of small cross-sectional area. In case of diaphragm, however, it is difficult to confirm the compactness of the closed inside of steel pipes. The present study examined the properties of super-high strength concrete over 80MPa by comparing it with 40MPa concrete through heat conductivity and length change tests based on a mixture ratio satisfying the mixture goal presented in the guideline for the design and construction of concrete-filled steel pipe structure. and evaluated the performance of super-high strength concrete according to the shape and size of the aperture ratio of diaphragm.

  • PDF

Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.451-465
    • /
    • 2020
  • This paper presents experimental and numerical investigations on mechanical properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) with four types of steel fibers; micro steel (MS), crimped (C), round crimped (RC) and hooked-end (H), in two fiber contents of 1% and 2% (by volume) and two lengths of 13 and 30 mm. Compression, direct tension, and four-point bending tests were carried out on four types of specimens (prism, cube, dog-bone and cylinder), to study tensile and flexural strength, fracture energy and modulus of elasticity. Results were compared with UHPC specimens without fibers, as well as with available equations for the modulus of elasticity. Specimens with MS fibers had the best performance for all mechanical properties. Among macro fibers, RC had better overall performance than H and C fibers. Increased fibers improved all mechanical properties of UHPFRC, except for modulus of elasticity, which saw a negligible effect (mostly less than 10%). Moreover, nonlinear finite element simulations successfully captured flexural response of UHPFRC prisms. Finally, nonlinear regression models provided reasonably well predictions of flexural load-deflection behavior of tested specimens (coefficient of correlation, R2 over 0.90).

SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가 (Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading)

  • 이상호;김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.169-180
    • /
    • 2007
  • 본 연구에서는 SD500 고강도 철근에 적합한 강관 스플라이스 슬리브를 개발한 후에 실물크기의 20개 실험체를 제작하여 가력실험을 실시하였다. 그리고 강도를 비롯한 구조성능을 철근의 정착길이, 슬리브의 타입, 철근의 규격과 같은 실험변수에 따른 영향을 분석하고, 국내기준을 비롯한 주요기준에 따라서 비교, 평가하였다. 실험 결과는 SD500 고강도 철근용으로 개발된 강관 스플라이스 슬리브 철근이음은 주요기준에서 요구하는 구조성능을 가지고 있는 것으로 확인되었고 SD500 고강도 철근용 슬리브 철근이음에 대한 구조설계 기준 확립을 위한 기술적 자료를 제시하였다.

Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns

  • Pons, David;Espinos, Ana;Albero, Vicente;Romero, Manuel L.
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.705-717
    • /
    • 2018
  • This paper presents a numerical investigation on the mechanical performance of concrete-filled dual steel tubular columns of circular section subjected to concentric axial load. A three-dimensional numerical model is developed and validated against a series of experimental tests. A good agreement is obtained between the experimental and numerical results, both in the peak load value and in the ascending and descending branches of the load-displacement curves. By means of the numerical model, a parametric study is carried out to investigate the influence of the main parameters that determine the axial capacity of double-tube columns, such as the member slenderness, inner and outer steel tube thicknesses and the concrete grade - of both the outer concrete ring and inner core -, including ultra-high strength concrete. A total number of 163 numerical simulations are carried out, by combining the different parameters. Specific indexes are defined (Strength Index, Concrete-Steel Contribution Ratio, Inner Concrete Contribution Ratio) to help rating the relative mechanical performance of dual steel tubular columns as compared to conventional concrete-filled steel tubular columns, and practical design recommendations are subsequently given.

Evaluation criteria for filling performance of high-flowing concrete using steel-concrete panel

  • Dong Kyu Lee;Jae Seon Kim;Myoung Sung Choi
    • Advances in concrete construction
    • /
    • 제16권5호
    • /
    • pp.231-241
    • /
    • 2023
  • The purpose of this study was to evaluate the practical application of high-flowing concrete for a steel-concrete panel (SCP) module for a liquefied natural gas (LNG) storage tank. We evaluated the physical properties and filling performance of the developed concrete for the SCP module. First, slump tests were performed to evaluate the performance of the proposed standards for the filling tests. All the concrete mixes showed satisfactory performance. Based on the results of the previous study, the reliability of the required time measured using the T500 test and the rheometer results measured before and after pumping was 0.94, indicating that segregation and blocking should not occur. L-box and U-box tests were conducted before and after pumping. All the recommended standards showed satisfactory performance. The SCP structural module for LNG storage tanks was fabricated to a full scale to evaluate its practical application at the final site. Satisfactory filling performance was confirmed for all the specimens.

제강슬래그와 폐아스팔트를 활용한 중온 아스팔트 포장의 거동 분석 (Experimental and Numerical Analysis of Warm Mix Asphalt Pavement prepared using Steel Slag and RAP)

  • 이호정;장동복;김현욱;김인태;김기병;이재훈
    • 한국도로학회논문집
    • /
    • 제19권2호
    • /
    • pp.55-65
    • /
    • 2017
  • PURPOSES : This study aimed to analyze the experimental and numerical behavior of warm mix asphalt pavement prepared using steel slag and RAP and to conduct economic analysis of pavement construction. METHODS : For developing high performance asphalt pavement, we performed three evaluations: fundamental analysis, experimental testing, and 3D finite element analysis. In particular, 3D finite element analysis was conducted on several pavement structures by adopting the results of experimental tests. RESULTS : Through the various evaluations, it was established that steel slag was effective for use as asphalt mixture aggregate. Moreover, asphalt mixture constituting steel slag and RAP demonstrated higher performance behavior compared with conventionally used asphalt mixture. Furthermore, based on the 3D FE modeling, we established that the developed asphalt pavement constituting steel slag and RAP can be utilized for thin layer pavement with comparable performance behavior. CONCLUSIONS :Warm mix asphalt pavement prepared using steel slag and RAP is more competitive and economic compared to hot-mix asphalt pavement. Moreover, it can be applied for preparing thin layer asphalt pavements with reasonable performance. The developed warm mix asphalt pavement prepared using steel slag and RAP can be an alternative pavement type with competitive performance based on the reasonable economic benefit it provides.

강섬유 혼입율 및 형상비가 초고강도 콘크리트의 역학적 성질에 미치는 영향 (The Effects of Mixture Rate and Aspect Ratio of Steel Fiber on Mechanical Properties of Ultra High Performance Concrete)

  • 최중구;이건철;고경택
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.14-20
    • /
    • 2017
  • UHPC는 초고층 건물 및 초장대교의 경우 필연적으로 사용되어진다. 일반적으로 콘크리트는 압축강도보다 낮은 휨강도 및 인장강도를 가지므로 취성균열이 발생하여 에너지 흡수능력이 저하된다. 이러한 문제를 해결하기 위해 본 연구에서는 강섬유의 혼입율과 형상비가 UHPC의 기계적 물성에 미치는 영향을 조사하고자한다. 시리즈 I에서, 20mm 직선형 강섬유가 0, 1.0, 1.3, 1.5 및 2.0%의 혼입율로 첨가되었다. 시리즈 II에서는 16mm 강섬유를 0, 1, 1.5%로 혼입한 후 형상비에 따라 역학적 성질을 조사하였다. 실험결과, 압축강도의 차이는 미비했다. 하지만 휨강도 및 인장강도와 관련하여 혼입율 및 형상비가 증가함에 따라 휨성능 및 인장성능이 개선되었다.

High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers

  • Kim, Dong-Joo;Naaman, Antoine E.;El-Tawil, Sherif
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권2호
    • /
    • pp.119-126
    • /
    • 2009
  • This paper provides a brief summary of the performance of an innovative slip hardening twisted steel fiber in comparison with other fibers including straight steel smooth fiber, high strength steel hooked fiber, SPECTRA (high molecular weight polyethylene) fiber and PVA fiber. First the pull-out of a single fiber is compared under static loading conditions, and slip rate-sensitivity is evaluated. The unique large slip capacity of T-fiber during pullout is based on its untwisting fiber pullout mechanism, which leads to high equivalent bond strength and composites with high ductility. Due to this large slip capacity a smaller amount of T-fibers is needed to obtain strain hardening tensile behavior of fiber reinforced cementitious composites. Second, the performance of different composites using T-fibers and other fibers subjected to tensile and flexural loadings is described and compared. Third, strain rate effect on the behavior of composites reinforced with different types and amounts of fibers is presented to clarify the potential application of HPFRCC for seismic, impact and blast loadings.

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.

강재교각 기초부의 연결상세 개선을 위한 실험적 연구 (An Experimental Study For Improvement of Joint Detail of Steel Pier - Foundation)

  • 김희주;함준수;양성돈;황원섭
    • 한국강구조학회 논문집
    • /
    • 제24권5호
    • /
    • pp.491-501
    • /
    • 2012
  • 현재 강재교각 기초부의 설계에 적용되어지고 있는 형식은 기초 콘크리트 내부에 앵커프레임을 설치하여 교각부와 연결하는 형태로 설계 및 시공을 하고 있다. 이는 복잡한 설계와 시공으로 인하여 기초부의 크기가 커지고, 과대 설계되는 경향이 있다. 본 연구에서는 고성능강을 이용한 교각 기초부의 연결상세와 관련하여 새로운 형상을 제안하기 위하여 기존 설계기준에 의한 시험체와 고장력 앵커를 사용한 새로운 연결형상 시험체 등 총 3개의 시험체를 제작하여 실내 시험을 실시하였다. 이를 통하여 각 시험체의 성능을 비교 분석하여 연결형식에 따른 구조물의 거동특성을 분석하였다.