• 제목/요약/키워드: high performance fiber reinforced cementitious composites

검색결과 76건 처리시간 0.026초

전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석 (Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup)

  • 김성욱;한상묵;강수태;공정식;강준형;전상은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

초고성능 시멘트 복합체의 압축강도에 대한 강섬유 보강 효과 (The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Performance Cementitious Composites(UHPCC))

  • 강수태;박정준;류금성;김성욱
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권5호
    • /
    • pp.110-118
    • /
    • 2010
  • 본 연구에서는 초고성능 시멘트 복합체(Ultra High Performance Cementitious Composites, UHPCC)의 압축강도에 미치는 강섬유 보강효과에 관한 연구를 수행하였으며, 일반 강섬유보강 콘크리트에서의 경향과 비교 검토를 실시하였다. 다양한 크기의 압축강도에 대해 UHPCC에서의 섬유보강효과에 관한 실험을 수행한 결과, 일반 섬유보강 콘크리트에서처럼 섬유보강에 따른 압축강도의 향상을 확인할 수 있었다. 실험결과는 압축강도 100MPa 이하를 대상으로 하는 일반 강섬유보강 콘크리트에 관한 기존 연구결과들과 비교분석을 실시하였다. 그 결과 모든 범위의 압축강도에 대해 압축강도에 관계없이 $f'_{cf}-f'_c$와 RI 이 일정한 선형관계를 가지는 것을 규명하였으며, UHPCC를 포함하는 광범위한 압축강도의 강섬유보강 콘크리트에 대해 적용이 가능한 포괄적 섬유보강효과의 관계식을 도출하였다.

비틀림 강섬유의 비틀림 횟수가 고성능 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향 (Influence of Number of Twist on Tensile Behavior of High Performance Fiber Reinforced Cementitious Composites with Twisted Steel Fibers)

  • 김동주
    • 콘크리트학회논문집
    • /
    • 제22권4호
    • /
    • pp.575-583
    • /
    • 2010
  • 이 연구는 비틀림 강섬유(T- 섬유) 의 비틀림 횟수가 인발거동과 T- 섬유를 사용한 고성능 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향을 조사하였다. T- 섬유의 여러 인자와 비틀림 횟수가 섬유의 인발거동에 미치는 영향을 해석적으로 조사하고, 최대의 인발에너지를 생성할 수 있는 비틀림 횟수를 조사하였다. 이와 더불어 T- 섬유의 인발시험과 인장시험을 수행하여, 비틀림 횟수가 고인성 섬유보강 시멘트 복합재료의 인장거동에 미치는 영향을 조사하였다. 비틀림 횟수가 6ribs/30 mm인 T(L)- 섬유와 비틀림 횟수가 18ribs/30 mm인 T(H)- 섬유를 사용하였다. T(H)- 섬유는 인발시험시 섬유의 파단되어, T(L)- 섬유보다 높은 인발응력을 유발했음에도 불구하고 낮은 총 인발에너지를 생성하였다. 이러한 인발 시험서의 결과는 인장 거동에도 분명하게 반영되었다. T(L)- 섬유를 사용한 고인성 섬유보강 시멘트 복합재료의 경우, T(H)- 섬유의 사용시보다, 우수한 변형능력과 에너지 흡수능력, 그리고 미세균열 거동을 보였다.

고인성 섬유복합재료 ECC (Engineered Cementitious Composite)의 시공성 (Processibility of High Ductile Fiber-Reinforced ECCs (Engineered Cementitious Composites))

  • 김윤용;김정수;김진근;하기주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.313-316
    • /
    • 2005
  • In the recent design of high ductile fiber-reinforced cementitious composite ECC, which exhibits tensile strain-hardening behavior in the hardened state, optimizing both processing mechanical properties for specific applications is critical. This study introduced a method to develop useful ECCs in field, which possess the different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). Control of rheological modulation was regarded as a key factor to allow the performance of the desired processing, while retaining the ductile material properties. To control the rheological properties of the composite, we first determined basic ECC compositon, which is based on micromechanics and steady-state cracking theory. The stability and consequent viscosity of suspensions were, then, mediated by optimizing dosages of chemical and mineral admixtures. The rheological properties altered by this approach were revealed to be effective in obtaining ECC hardened properties, allowing us to readily achieve the desired function of the fresh ECC.

  • PDF

유·무기섬유 혼입비 및 혼입율 변화에 따른 HPFRCC의 기초물성 변화 (Changing Fundamental Properties of HPFRCC Depending on Combination and Content of Organic and Inorganic Fibers)

  • 이제현;문병룡;박용준;조성준;김종;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2016년도 춘계 학술논문 발표대회
    • /
    • pp.28-29
    • /
    • 2016
  • Recently, the attention on high tensile, and high performance cementitious composite (HPFRCC) which can minimize the damage from explosion of inflammable gas and chemicals has been increased. In spite of outstanding tensile performance, HPFRCC has the drawbacks of fiber ball, undesirable cost, and high autogenous shrinkage. therefore, in this research, to develop the optimum HPFRCC, the fundamental properties and autogenous shrinkage of HPFRCC was analyzed depending on various combination and content of organic and inorganic fibers.

  • PDF

후크형 강섬유와 PVA섬유를 하이브리드 보강한 시멘트복합체의 인장특성에 미치는 변형속도의 영향 (Strain Rate Effect on tensile properties of Hooked Steel Fiber and PVA Fiber hybrid reinforced cementitious composites)

  • 손민재;김규용;이상규;김경태;백재욱;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.208-209
    • /
    • 2018
  • In this study, the tensile properties of hybrid fiber reinforced cementitious composites under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance performance of hooked steel fiber at strain rate 101/s.

  • PDF

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

  • Kang, Su-Tae;Lee, Kang-Seok;Choi, Jeong-Il;Lee, Yun;Felekoglu, Burak;Lee, Bang Yeon
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.33-41
    • /
    • 2016
  • Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental study on the tensile behavior, including tensile ductility and crack patterns, of UHPC reinforced by hybrid steel and polyethylene fibers and incorporating plastic beads which have a very weak bond with a cementitious matrix. These beads behave as an artificial flaw under tensile loading. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the tensile behavior including tensile strain capacity and cracking pattern of UHPC investigated in this study can be controlled by fiber hybridization and artificial flaws.

Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성 (Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites)

  • 윤현도;양일승;한병찬;복산양;전에스더;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

고인성 섬유보강 시멘트 복합체를 사용한 내진요소의 구조성능 (The Structural Behavior of Seismic Devices using High Performance Fiber Reinforced Cement Composites)

  • 양일승;윤현도;한병찬;박완신;김선우;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.21-24
    • /
    • 2004
  • Structural performance of the seismic devices made by steel bar and high performance fiber reinforced cement composites(HPFRCCs) was experimentally observed. These dampers will be applied for reducing damage as well as seismic response. The advantages of the HPFRCCs damper is selective structural performance, strength, stiffness, and ductility by changing configuration, bar arrangements and type of materials used. The experimental results indicate that elemental ductility is much increased with decreasing damage when the HPFRCCs are applied to the damper. It means cementitious damper for structural control is available which has much merit in performance and cost.

  • PDF

하이브리드 합성섬유를 이용한 고인성 섬유보강 복합체의 휨특성 (Flexural Characteristics of High Performance Fiber Reinforced Cement Composites used in Hybrid Synthetic Fibers)

  • 한병찬;전 에스더;박완신;이영석;복산양;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.734-737
    • /
    • 2004
  • The synthetic fibers such as polypropylene(PP) and polyvilyl-alcohol(PVA) fiber are poised as a low cost alternative for reinforcement in structural applications. It has been reported that synthetic fiber in cement composites can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. High performance fiber reinforced cementitious composite(HPFRCCs) shows ultra high ductile behavior in the hardened state, because of the fiber bridging properties. Therefore, a variety of experiments have being performed to access the performance of HPFRCCs recently. The research emphasis is on the flexural behavior of HPFRCCs made in synthetic fibers, and how this affects the composite property, and ultimately its strain-hardening performance. Three-point bending tests on HPFECCs are carried out. As the result of the bending tests, HPFRCCs showed high flexural strength and ductility. HPFRCCs made in PVA or Hybrid fiber were, also, superior to PP of singleness. On the other hand, effect of sand volume fraction on HPFRCCs made in PP was insignificant.

  • PDF