• Title/Summary/Keyword: high peak resistance

Search Result 185, Processing Time 0.027 seconds

The Estimation and Analysis of Miryang Dam Inflow based on RCP Scenario (RCP 시나리오 기반 밀양댐 미래 유입량 산정 및 결과분석)

  • Choo, Tai Ho;Ko, Hyun Soo;Yoon, Hyeon Cheol;Noh, Hyun Seok;Son, Hee Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3469-3476
    • /
    • 2015
  • The Korea Academia-Industrial cooperation Society. The Korea Academia-Industrial cooperation Society. In Korea, the territory has east high west low type and the rainfall is concentrated in the summer season. A nation having these topography and precipitation condition like Korea has to basically needs support of hardware alternatives. However, the right places decrease gradually and the resistance of the public opinion for national water resources policy stiffens gradually. The climate change has an effect in water resources fields and has a close relation. In the present study, therefore, future inflow of Miryang multipurpose dam basin is estimated by using SWAT model applied RCP 4.5 and 8.5 scenarios of "Korea Meteorological Administration" and considering the results, the future direction is purposed to operate the dam. As a result, the rainfall pattern is changed from traditional peak form to flat form. The dam operation rule in accordance with changing precipitation pattern has to be modified from the conventional operation rule and a new plan has to be established to meet a situation.

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple (안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.695-700
    • /
    • 2019
  • n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

Correlation of Tracheal Cross-sectional Area with Parameters of Pulmonary Function in COPD (만성 폐쇄성 폐질환에서 기관의 단면적과 폐기능지표와의 상관관계)

  • Lee, Chan-Ju;Lee, Jae-Ho;Song, Jae-Woo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Chung, Hee-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.628-635
    • /
    • 1999
  • Background : Maximal expiratory flow rate is determined by the size of airway, elastic recoil pressure and the collapsibility of airway in the lung. The obstruction of expiratory flow is one of the major functional impairments of emphysema, which represents COPD. Nevertheless, expiratory narrowing of upper airway may be recruited as a mechanism for minimizing airway collapse, and maintaining lung volume and hyperinflation by an endogenous positive end-expiratory pressure in patients with airflow obstruction. We investigated the physiologic role of trachea in respiration in emphysema. Method : We included 20 patients diagnosed as emphysema by radiologic and physiologic criteria from January to August in 1997 at Seoul Municipal Boramae Hospital. Chest roentgenogram, high resolution computed tomography(HRCT), and pulmonary function tests including arterial blood gas analysis and body plethysmography were taken from each patient. Cross-sectional area of trachea was measured according to the respiratory cycle on the level of aortic arch by HRCT and calibrated with body surface area. We compared this corrected area with such parameters of pulmonary function tests as $PaCO_2$, $PaO_2$, airway resistance, lung compliance and so on. Results : Expiratory cross-sectional area of trachea had significant correlation with $PaCO_2$ (r=-0.61, p<0.05), $PaO_2$ (r=0.6, p<0.05), and minute ventilation (r=0.73, p<0.05), but inspiratory cross-sectional area did not (r=-0.22, p>0.05 with $PaCO_2$, r=0.26, p>0.05 with $PaO_2$, and r=0.44, p>0.05 with minute ventilation). Minute ventilation had significant correlation with tidal volume (r=0.45, p<0.05), but it had no significant correlation with respiratory frequency (r=-0.31, p>0.05). Cross-sectional area of trachea had no significant correlation with other parameters of pulmonary function including $FEV_1$, FVC, $FEV_1$/FVC, peak expiratory flow, residual volume, diffusing capacity, airway resistance, and lung compliance, whether the area was expiratory or inspiratory. Conclusion : Cross-sectional area of trachea narrowed during expiration in emphysema, and its expiratory area had significant correlation with $PaCO_2$, $PaO_2$, and minute ventilation.

  • PDF

Expression of Peroxiredoxin I and II in Neonatal and Adult Rat Lung Exposed to Hyperoxia (고산소에 노출된 신생 백서와 성숙 백서에 있어서Peroxiredoxin I과 II의 발현)

  • Lee, Chang-Youl;Kim, Hyung-Jung;Ahn, Chul-Min;Kim, Sung-Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.1
    • /
    • pp.36-45
    • /
    • 2002
  • Background : In mammals, the activity of antioxidant enzymes is increased in adult lung to adapt to hyperoxia. The increase of these activities is augmented in neonates and is known as an important mechanism of tolerance to high oxygen levels. Peroxiredoxin(Prx) is an abundant and ubiquitous intracellular antioxidant enzyme. Prx I and II are major cytosolic subtypes. The aim of this study was to examine th Prx I and II mRNA and protein expression levels in adult rat lungs and to compare then with those of neonatal rat lungs exposed to hyperoxia. Materials and Methods : Adult Sprague-Dawley rats and neonates that were delivered from timed pregnant Sprague-Dawley rat were randomly exposed to normoxia or hyperoxia. After exposure to high oxygen level for a set time, the bronchoalveolar lavage fluid and lung tissue were obtained. The Prx I and II protein expression levels were measured by western blot analysis using polyclonal rabbit anti-Prx I or anti-Prx II antibodies and the relative expression of the Prx I and Prx II per Actin protein were obtained as an internal standard. The Prx I and II mRNA expression levels were measured by northernblot analysis using Prx I and Prx II-specific cDNA prepared from pCRPrx I and pCRPrx II, and the relative Prx I and Prx II expression levels per Actin mRNA were obtained as an internal standard. Results : Hyperoxia induced some peak increase in the Prx I mRNA levels after 24 hour in adult rats. Interestingly, hyperoxia induced a marked increase of Prx I mRNA 24 hour in neonatal rats. However, hyperoxia did not induce an alteration in the expression of Prx II mRNA in both the adult and neonatal rat lungs. Hyperoxia did not induce an alteration in the expression of the Prx I and Prx II protein in both the adult and neonatal rat lungs. Hyperoxia did not induce an alteration in the amount of Prx I and Prx II protein all the times in the bronchoalveolar fluid of adult rats. Conclusion : Prx I and II is differently regulated by hyperoxia in adult and neonatal rat lung at the transcriptional level. The prominent upregulation of Prx I mRNA in neonates compared to those in adults by hyperoxia may be another mechanism of resistance to high oxygen levels in neonate.

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.