• Title/Summary/Keyword: high modulus

Search Result 1,485, Processing Time 0.027 seconds

High-speed Microcantilever Resonance Testing on the Young's Modulus of a Nanoscale Titanium Film (고속 마이크로 외팔보 공진시험을 통한 나노스케일 티타늄 박막의 탄성계수 평가)

  • Kim, Yun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.392-397
    • /
    • 2017
  • The Young's modulus of a nanoscale titanium (Ti) thin-film was evaluated using a high-speed microcantilever resonating at the megahertz frequency in the present study. A 350 nm thick Ti film was deposited on the surface of a silicon microcantilever, and the morphology of the film was analyzed using the atomic force microscopy. The microcantilever was excited to resonate using an ultrasonic pulser that generates tone burst signals and the resonance frequency shift induced by the deposition of Ti was measured using a Michelson interferometer. The Young's modulus was determined through a modal analysis using the finite element method and the result was validated by the nanoindentation testing, showing good agreement within a relative error of 1.0%. The present study proposes a nanomechanical characterization technique with enhanced accuracy and sensitivity.

High Capacity Information Hiding Method Based on Pixel-value Adjustment with Modulus Operation

  • Li, Teng;Zhang, Yu;Wang, Sha;Sun, Jun-jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1521-1537
    • /
    • 2021
  • Through information hiding technique, secret message can be hidden in pictures. Stego-image quality and hiding capacity are two important metrics for information hiding. To enhance these metrics, many schemes were proposed by scholars in recent years. Some of them are effective and successful, but there is still a room for further improvement. A high capacity information hiding scheme (PAMO, Pixel-value Adjustment with Modulus Operation Algorithm) is introduced in this paper. PAMO scheme uses pixel value adjustment with modulus operation to hide confidential data in cover-image. PAMO scheme and some referenced schemes are implemented in Python and experiments are carried out to evaluate their performance. In the experiments, PAMO scheme shows better performance than other methods do. When secret message length is less than 72000 bits, the highest hiding capacity of PAMO can reach 7 bits per pixel, at the same time the PSNR of stego-images is greater than 30 dB.

Evaluation of Stress-Strain Relationship and Elastic Modulus Equation of Steel Fiber Reinforced High-Strength Concrete (강섬유보강 고강도콘크리트의 응력-변형률 곡선 및 탄성계수 추정식 평가)

  • 장동일;손영현;조광현;김광일
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.13-20
    • /
    • 2000
  • In this study, the compression test of steel fiber reinforced high-strength concrete have been performed with varying strengths and volume factions of steel fiber. Three types of matrices including low strength concrete( c'=30 MPa), medium strength concrete( c'=50 MPa), and high strength concrete( c'=70 MPa) were selected. Five types of fiber fractions were studied including 0.0%, 0.5%, 0.75%, 1.0%, and 1.5% by volume. From the results of the compressive strength test, the post-peak characteristics of the stress-strain relationship were investigated, and the existing equations to predict the elastic modulus were experimentally evaluated.

Characteristics of Elastic Wave in Fire damaged High Strength Concrete using Impact-echo Method (충격반향기법을 이용한 화해를 입은 고강도 콘크리트의 탄성파 특성)

  • Lee, Jun Cheol;Lee, Chang Joon;Kim, Wha Jung;Lee, Ji Hee
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, the damages of high strength concrete exposed to high temperature have been evaluated by the impact echo method. Elastic wave velocity and dynamic modulus of elasticity were measured by the impact echo method, and the compressive strength and the static modulus of elasticity were measured by the compression testing method after exposure to high temperature. The results showed that elastic wave velocity has a linear correlation with the compressive strength and dynamic modulus of elasticity has a linear correlation with static modulus of elasticity. Based on results, it is concluded that the impact echo method can be effectively applied to evaluate the mechanical properties of fire damaged high strength concrete.

Development of Long-Life Asphalt Pavements Method Using High Modulus Asphalt Mixes (고강성 기층재를 적용한 장수명 아스팔트포장 공법 개발)

  • Lee Jung-Hun;Lee Hyun-Jong
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.49-61
    • /
    • 2006
  • This study suggests long-life asphalt pavement method which can save maintenance cost by increasing the design and performance period of pavements. The high modulus asphalt binder developed and then various physical tests are performed. Laboratory performance tests and accelerated pavement test are conducted for the high modulus and conventional mixtures. The test results show that dynamic modulus values of high modulus mixtures are higher than those of the conventional mixtures, The high modulus mixtures yield better fatigue, rutting and moisture damage performance than conventional mixtures. Structural analysis is performed and a database is built up for long life asphalt pavement design. Pavement response model is developed through a multiple regression analysis program, SPSS using the database. A design software for the long life pavements is developed based on the pavement response model and laboratory and field performance tests results. In addition, optimum pavement sections and materials are suggested. The suggested AC thickness of long life asphalt pavement is 29cm. A Life cycle cost analysis(LCCA) is conducted to check the economical efficiency of the long life pavement section. The LCCA result shows that initial construction costs of long life and conventional pavements are almost equal, but long life pavement is more profitable in terms of the LCCA.

  • PDF

Effect of Weld Elastic Modulus on Simulation of Stress Concentration and Fatigue Life for Boiler Vessel (ADINA & WINLIFE 활용한 압력용기 용접부 피로파괴 해석)

  • Choe, Byung Hak;Lee, Bum Gyu;Shim, Jong Heon;Park, Chan Sung;Kim, Jin Pyo;Park, Nam Gyu
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.47-53
    • /
    • 2016
  • The aim of this study is to consider effect of weld elastic modulus on simulations of stress concentration and fatigue life for pressure vessel. The investigations include analysis with ADINA and WINLIFE softwares for whole body model about using condition of the boiler vessel. Values of weld elastic modulus were divided by 5 steps in butt weld area of the boiler vessel body. The stress concentration of the butt weld more was increased in case of higher elastic modulus of weld area because of higher difference of material properties between matrix and weld. It was concluded that the fatigue lives were decreased along increasing stress concentration due to high elastic modulus of weld. The matrix microstructure was estimated as pearlitic structure of ${\alpha}$ ferrite and pearlite. And the microstructures of welds along 5 steps of elastic modulus were estimated as bainitic fine pearlite and martensite as increasing elastic modulus.

Effect of the Elasticity Modulus of Jig Material on Blade Edge Shape in Grinding Process of Sapphire Medical Knife (사파이어 의료용 나이프의 연삭가공에서 지그의 탄성계수가 날 부 형상에 미치는 영향)

  • Shin, Gun-Hwi;Lee, Deug-Woo;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • This study focuses on the effect of the elasticity modulus of jig material on blade edge shape in the grinding process of a sapphire medical knife. The ELID grinding process was applied as the edge-grinding method for sapphire material. Carbon steel and copper have been selected as the hard and soft jig materials, respectively. The blade edge created by ELID grinding was measured by a surface roughness tester and optical microscope. The shape of the ground edge and surface roughness were compared using the measurement results. As a result, it was found that chipping in the blade edge of the sapphire knife occurred more than in the case of jig material with a high-elasticity modulus because of the high normal force in the grinding process. Moreover, the maximum height surface roughness, $R_{max}$,of the ground surface was higher in the case of the jig material with a high-elasticity modulus due to the difference in elasticelongation. It was considered to lead to chipping from the notch effect.

Test Method for Composites Material Properties under High Temperature(I) (복합재의 고온 특성 평가를 위한 시험 기법연구(I))

  • Kil, Hyung-Bae;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.259-261
    • /
    • 2012
  • The effect of high-temperature on the flexural modulus of epoxy resin were evaluated using universal testing machine with 3-point bending and dynamic mechanical analyzer. Temperatures of $30^{\circ}C$, $100^{\circ}C$, and $140^{\circ}C$ were considered for flexural test. The specimens having aspect ratio of 16, 32, and 40 were used. The results of storage modulus from DMA were similar to those from flexural test along with given temperatures. It is found that the flexural modulus increased with increasing aspect ratio and the specimen having aspect ratio of above 32 would be suitable for the evaluation of composite material properties under high temperature condition.

  • PDF

A High-Speed Dual-Modulus Prescaler Using Selective Latch Technique (Selective Latch Technique을 이용한 고속의 Dual-Modulus Prescaler)

  • 김세엽;이순섭김수원
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.779-782
    • /
    • 1998
  • This paper describes a high-speed Dual-modulus Prescaler (DMP) for RF mobile communication systems with pulse remover using selective latch technique. This circuit achieves high speed and low power consumption by reducing full speed flip-flops and using a selective latch. The proposed DMP consists of only one full speed flip-flop, a selective latch, conventional flip-flops, and a control gate. In order to ensure the timing of control signal, duty cycle problem and propagation delay must be considered. The failling edgetriggered flip-flops alleviate the duty cycle problem andthis paper shows that the propagation delay of control signal doesn't matter. The maximum operating frequency of the proposed DMP with 0.6um CMOS technology is up to 2.2㎓ at 3.3V power supply and the circuit consumes 5.24mA.

  • PDF

An Experimental Study on Physical Properties of High-Strength Concrete Using Sea Sand (해사를 이용한 고강도 콘크리트의 물성실험 연구)

  • 박종협;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.159-163
    • /
    • 1995
  • The purpose of this experimental research is to not only devlop the high-strength concrete using sea and river sand, but also investigatc mechanical properites of the high-strength concrete, such as the elastic modulus, the compressive strength of concrete cyllinder, and etc. Also, rational analytical formula for elastic modulus has been proposed together with those for the splitting tensile strength and the flexural strength to be predicted from compressive strength of conccrete cyllinder.

  • PDF