• Title/Summary/Keyword: high magnetic fields

Search Result 412, Processing Time 0.032 seconds

A Study on the Method of Magnetic Flux Leakage NDTfor Detecting Axial Cracks (축방향 미소결함 검출을 위한 자기누설 비파괴 검사 방법에 관한 연구)

  • Yun, Seung-Ho;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • From among the NDT (nondestructive testing) methods, the MFL (magnetic flux leakage) method is specially suitable for testing pipelines because pipeline has high magnetic permeability. The system applied to MFL method is called the MFL PIG. The previous MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is highly unlikely to detect the cracks which occur by exterior-interior pressure difference in pipelines and the shape of crack is long and very narrow. In MFL PIG, the magnetic field is performed axially and there is no changes of cross-sectional area at cracks that the magnetic field passes through. Cracks occur frequently in the pipelines and the risk of the accident from the cracks is higher than that from the metal loss and corrosions. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The circumferential MFL (CMFL) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). In CMFL PIG, cracks, standards of NACE, are detectable. To estimate the shape of crack, the leakage of magnetic fields for many kinds of cracks is analyzed and the method is developed by signal processing.

Sheld of AC magnetic filed using High Temperature Superconductor (고온초전도체에 의한 교류자장 차폐효과)

  • Kim, Sung-Hoon;Kim, Woo-Seok;Hahn, Song-Yop;Choi, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.932-934
    • /
    • 2002
  • In this paper, we proposed a method to shield perpendicular magnetic fields in high Tc superconductor(HTS) tape of a shell-type HTS transformer with double pancake windings. A diamagnetism of characteristics of superconductor is used to shield magnetic field. For a shielding experiment, a proper shielding model is chosen, and several kinds of HTS are used such as a monofilament HTS tape, two kinds of multifilament HTS tapes and YBCO film disk. The effect of shielding for the perpendicular magnetic field is measured with HTSs for shielding and their utility for shielding is proved.

  • PDF

Measurement and Analysis of the Magnetic Fields Magnitude under High Voltage Transmission Lines (초고압 송전선로의 자계크기 실측과 해석)

  • Cho, Sung-Bae;Lee, Eun-Woong;Lee, Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1583-1585
    • /
    • 1998
  • EMF measurements for the selected lines by a kinds of tower configurations conductors among 154kV, 345kV transmission lines which are a standard forms of high voltage transmission line in Domestic are performed at the field. Based on these measurings, Co-relation of both the Power current and the magnetic field strength is studed. compared of measured and calculated magnetic magnitude. and Using the measured equation obtained from field measuring, Magnetic field exposure value occurring under T/L for one year(1997) is presented.

  • PDF

Magnetic Force-based Immunochip using Superparamagnetic Nanoparticles

  • Park, Je-Kyun;Kim, Kyu-Sung
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.19-19
    • /
    • 2005
  • This paper reports a novel magnetic force-based microfluidic immunoassay using microbeads and magnetic nanoparticles. The magnetic force-based immunoassay was devised first and successfully applied to detect the rabbit IgG as the model analyte of microfluidic sandwich immunoassay. The microchannels were fabricated by poly(dimethysiloxane) (PDMS) molding processes and bonded on a slide glass by plasma treatment. At the part of the inlet, sample solution was hydrodynamically focused. The focused microbeads of sample solution were flowed through the 150 ${\mu}m$ width channel of outlet. However, when the microbeads are conjugated with the superparamagnetic nanoparticles under the applied magnetic fields, they will switch their flow path and flow through the 95 ${\mu}m$ width channel of outlet. The movements of microbeads conjugated with magnetic nanoparticles were demonstrated by magnetic field $gradients.^{1)}$ High magnetic field gradients using micro electromagnets could be applied to this detection method for high sensitivity and lower detection limit. In addition, the multiplexed $immunoassay^{2)}$ using an encoded microbead which is immobilized with a certain antibody could be possible using this detection principle.

  • PDF

Self Compensating Flux-gate Magnetometer Using Microcomputer (마이크로컴퓨터를 이용한 자체 보상형 flux-gate 마그네토미터제작)

  • Ga, E.M.;Son, D.;Son, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.149-153
    • /
    • 2002
  • Flux-gate magnetometer has been still used for low field magnetic field measurement with portability, low power consumption, and high reliability. In many applications, flux-gate magnetometer measures not absolute values but changes of the earth magnetic field. For the eia magnetic field change measurements, we have constructed a high sensitive 3-axis flux-gate magnetometer of which measuring ranges is ${\pm}$1000 nT and noise level is 5pT/√㎐ at 1 ㎐. Using this magnetometer, we can compensate the earth magnetic field of ${\pm}$50,000 nT with successive approximation methods using microcomputer. After earth magnetic field compensation, we could measure earth magnetic field changes with ${\pm}$100 nT measuring ranges.

Magnetization Loss Characteristics at Arbitrary Directional Magnetic Field by Perpendicular Magnetization Loss in YBCO CC and BSCCO Stacked Conductors (YBCO CC 적층 및 BSCCO tape 적층선재에서 수직자화 손실 값을 이용한 임의 방향 자화손실 평가)

  • Lee, Ji-Kwang;Lim, Hyoung-Woo;Park, Myung-Jin;Cha, Guee-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.282-288
    • /
    • 2007
  • Magnetization loss of high temperature superconductoring BSCCO tape and YBCO coated conductor(YBCOCC) is most important issue in the development of superconducting power devices. In this paper, the measured results of magnetization losses under various angles of external magnetic field in BSCCO tape stacked conductors and YBCO CC stacked conductors are presented and compared with each other. Also, we present the compared results of magnetization losses measured at arbitrary reaction magnetic fields and analyzed with perpendicular magnetic field components of those. The results show that magnetization losses of YBCO CC single and stacked conductors agree well with the analyzed value by it's perpendicular magnetic field component, but BSCCO single and stacked conductors are not.

Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

  • Tourab, Wafa;Babouri, Abdesselam
    • Safety and Health at Work
    • /
    • v.7 no.2
    • /
    • pp.102-110
    • /
    • 2016
  • Background: This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Methods: Experimental Measurements for the Multi-lines power system proposed have been conducted in the free space under the high voltage lines. Field's intensities were measured using a referenced and calibrated electromagnetic field meter PMM8053B for the levels 0 m, 1 m, 1.5 m and 1.8 m witch present the sensitive's parts as organs and major functions (head, heart, pelvis and feet) of the human body. Results: The measurement results were validated by numerical simulation using the finite element method and these results are compared with the limit values of the international standards. Conclusion: We project to set own national standards for exposure to electromagnetic fields, in order to achieve a regional database that will be at the disposal of partners concerned to ensure safety of people and mainly workers inside high voltage electrical substations.

Two-Paralleled PWM Power Amplifiers to Generate Highly Precise Gradient Magnetic Fields in MRI Systems

  • Watanabe, Shuji;Boyagoda, Prasanna;Takano, Hiroshi;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.569-574
    • /
    • 1998
  • This paper presents a two-paralleled 4 quadrant DC chopper type PWM power conversion circuit in order to generate a gradient magnetic field in the Magnetic Resonance Imaging (MRI) system. This power amplifier is connected in parallel with the conventional 4-quadrant DC chopper using IGBTs at their inputs/outputs to realize further high-power density, high speed current tracking control, and to get a low switching ripple amplitude in a controlled current in the Gradient Coils (GCs). Moreover, the power conversion circuit has to realize quick rise/fall response characteristics in proportion to various target currents in GCs. It is proposed in this paper that a unique control scheme can achieve the above objective. DSP-based control systems realize a high control facility and accuracy. It is proved that the new control system will greatly enlarge the diagnostic target and improve the image quality of MRI.

  • PDF

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

IMPACT OF THE ICME-EARTH GEOMETRY ON THE STRENGTH OF THE ASSOCIATED GEOMAGNETIC STORM: THE SEPTEMBER 2014 AND MARCH 2015 EVENTS

  • Cho, K.S.;Marubashi, K.;Kim, R.S.;Park, S.H.;Lim, E.K.;Kim, S.J.;Kumar, P.;Yurchyshyn, V.;Moon, Y.J.;Lee, J.O.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.2
    • /
    • pp.29-39
    • /
    • 2017
  • We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm ($Dst_{min}{\sim}-75nT$) driven by the X1.6 high speed flare-associated CME ($1267km\;s^{-1}$) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm ($Dst_{min}{\sim}-223nT$) caused by a CME with moderate speed ($719km\;s^{-1}$) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long-duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.