• Title/Summary/Keyword: high loaded paper

Search Result 199, Processing Time 0.026 seconds

Calendering Effects on the Properties of TiO$_2$ Highly Leaded Paper (캘린더링이 TiO$_2$ 고 충전지의 특성에 미치는 영향)

  • 오세중;서영범
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.69-78
    • /
    • 1998
  • Papers loaded with 10-40% $TiO_2$ by dry weight were calendered under the various combinations of calendering conditions such as calender type, linear pressure, and roll temperature. After being calendered, light scattering coefficient, surface roughness, density, and tensile strength of the papers were measured and the results were summerized as follows: 1. To increase the light scattering coefficient of $TiO_2$-highly-loaded paper further by calendering, the calender roll pressure and temperature should be kept low. Under these conditions, the physical strength of the paper was not significantly affected. 2. At low roll temperature, soft nip calender and machine calender type showed the same relationship between paper density and its roughness. At high roll temperature, soft nip calender type gave much lower roughness than machine calender type at the same density. 3. At high roll temperature of both calenders, the density as well as the tensile strength of the TiO$_2$-loaded paper was increased significantly.

  • PDF

Development of Hybrid Calcium Carbonate for High Loading Paper (II) - Comparison with GCC - (고충전지 제조를 위한 하이브리드 탄산칼슘 충전제의 개발 (II) - 중질탄산칼슘과 비교 -)

  • Jung, Jae Kwon;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.76-80
    • /
    • 2015
  • In filler loaded paper, the size of the filler affects its strength, optical and surface properties. As the size of the filler increases, tensile strength and bulk usually increases, opacity decreases, and smoothness becomes worse. Pre-flocculation of GCC (grounded calcium carbonate) makes large diameter flocs at aqueous medium that consists of multiple GCC particles, but they collapse to 2-dimensional shape in dried paper and makes low bulk paper. The hybrid calcium carbonate (HCC) that was made by in-situ $CaCO_3$ formation between GCC in aqueous medium made high bulk paper without harming tensile strength, bulk, opacity, and smoothness. The GCC that has equivalent size as HCC failed to make high opacity and smoothness as much as HCC.

Imaging Characteristics of Plastic Scintillating Fiber Screens for Digital Mammography

  • Choi, Won-Young;Walker, James K.;Jing, Zhenxue
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.165-172
    • /
    • 1996
  • A scanning slot digital mammography system Luing a plastic scintillating fiber screen (SFS) is currently being developed To improve the x-ray interaction efficiency and absorption efficiency of an SFS, high Z elements can be added into the scintillating fiber core. In this paper, we investigated theoretically the zero spatial frequency detective quantum efficiency, DQE(0), and modulation transfer function, MTF(f), of three 2 cm thick SFSs made of polystyrene, polystyrene loaded with 5% by weight of lead, and polystyrene Loaded with 10% by weight of tin scintillating fibers. X-ray interaction efficiency, scintillating light intensity distributions and line spread functions were generated using Monte Carlo simulation. DQE(0) and MTF(f) were computed for x-ray energies ranging from 15 to 50 keV. Loading high Z elements into the SFS markedly increased the DQE(0). For x-ray energies used for mammovaphy, DQE(0) values of both high Z element loaded SFSs are about a factor of three higher than the DQE(0) of an Min-R screen. At mammographic x-ray energies, MTF(f) values of all three SFSs are Venter than 50% at 25 Ip/mm spatial frequency, and were found to be dominated by the 20 um individual scintillating fiber diameter used The results show that both hiP DQE(0) and spatial resolution can be achieved with the high Z element loaded SFSs, which make these SFSs attractive for use in a scanning slot detector for digital mammography.

  • PDF

A Study on the Phase Noise Improvement of Oscillator using Dielectric-rod loaded Cavity Resonators with HIS End-plates (고온초전도체와 유전체 삽입 공동 공진기를 이용한 발진기의 위상잡음 개선에 관한 연구)

  • Lee, Won-Hui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.174-177
    • /
    • 2009
  • In this paper, an oscillator using dielectric-rod loaded cavity resonators with HTS(High Temperature Superconductor) end-plates was presented. It was operated at X-band. A two port cavity resonator was incorporated into a basic feedback loop oscillator configuration. A rutile loaded cavity resonator with HTS thin film end-plates was used to provide the quality factor between $10^4$ and $10^6$. A parallel feedback oscillator was constructed with a dielectric loaded cavity resonator, an amplifier, and a directional coupler. At 300 K, the experimental results showed the phase noise of -108 dBc/Hz at a 100 kHz offset frequency. At 26 K, the results was -118.8 dBc/Hz at same offset frequency.

Behavior of fibre reinforced cementitious material-filled steel tubular columns

  • Kharoob, O.F.;Taman, M.H.
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.465-472
    • /
    • 2017
  • This paper presents an experimental study, investigating the compressive behavior of glass-fibre reinforced and unreinforced cementitious material-filled square steel tubular (GFCMFST and CMFST) columns. The specimens were manufactured by using high performance cementitious materials without using coarse aggregate. The influence of adding glass-fibres to the mix on the behavior of both axially and eccentrically loaded columns is considered. It was found that adding glass fibre improvesthe confinement behavior, the axial compressive strength, the stiffness and the toughness of both axially and eccentrically loaded columns. The compressive strength of axially loaded columns is compared with strength predictions according to EC4 and the AISC specification. It was found that the design predictions according to EC4 and the AISC codes provide conservative results for CMFST and GFCMFST columns. Alternatively, the axial load-bending moment interaction diagrams specified in theEC4 are conservative for the eccentrically tubular CMFST and GFCMFST tested columns.

Dynamic response of steel-concrete composite bridges loaded by high-speed train

  • Podworna, Monika
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.179-196
    • /
    • 2017
  • The paper focuses on dynamic analyses of a series of simply-supported symmetric composite steel-concrete bridges loaded by an ICE-3 train moving at high speeds up to 300 km/h. The series includes five bridges with span lengths ranging from 15 m to 27 m, with repeatable geometry of the superstructures. The objects, designed according to Polish standards valid from 1980s to 2010, are modelled on the bridges serviced on the Central Main Line in Poland since 1980s. The advanced, two-dimensional, physically nonlinear model of the bridge-track structure-high-speed train system takes into account unilateral nonlinear wheel-rail contact according to Hertz's theory and random vertical track irregularities equal for both rails. The analyses are focused on the influence of random track irregularities on dynamic response of composite steel-concrete bridges loaded by an ICE-3 train. It has been pointed out that certain restrictions on the train speed and on vertical track irregularities should be imposed.

A Reconfigurable Antenna for Alternative Operation between Disk-Loaded Dipole and Folded Dipole (Disk-Loaded 다이폴과 Folded 다이폴로 동작하는 Reconfigurable 안테나)

  • Park, Seul-Gi;Jeong, Geun-Seok;Choo, Ho-Sung;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1327-1336
    • /
    • 2007
  • In this paper, we propose a reconfigurable antenna which operates as a disk-loaded dipole antenna and a folded dipole antenna alternatively using RF on/off switches. The antenna can change its effective length to achieve dual-band operation; operates as the folded dipole antenna for stepping up the radiation resistance in low frequency band of $20{\sim}300$ MHz, and as the disk-loaded dipole antenna for an omni-directional radiation pattern (horizontal plane) and a donut-shaped radiation pattern (vertical plane) in high frequency band of $300{\sim}1.3$ GHz. In the low band, the proposed antenna shows higher gain than a conventional dipole antenna with a reduced antenna size. In the high band, the antenna maintains a broad beamwidth of about $80^{\circ}$, thus the antenna can be applicable to antennas for direction finding applications.

A Study on Design Improvement and Strength Evaluation of Shafting System for Washing Machine (드럼세탁기 축계의 설계개선 및 강도평가에 관한 연구)

  • Kim Eui-Soo;Kim Sang-Uk;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.154-162
    • /
    • 2006
  • By laying its drum horizontally, front-loaded washing machine mostly used in Europe that uses the head of the water to launder was appropriate for washing only small amount of laundry. However, the demands of customers are requiring front-loaded washing machine to handle big capacity laundry as well, and have faster rotation speed to increase drying ability. To meet such demands, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Shafting system is mainly divided into flange and shaft. Flange is located between the drum and shaft, transferring power from the shaft to drum, and acting as a supporter of the back of the drum. Shaft is connected from the flange to insert production, transferring power from the motor to drum, and mainly acting as stiffness against the horizontal weight of the shafting system. In this paper, strength analysis and experiment were executed on both the shaft and flange of front-loaded washing machine to suggest the design improvement of shafting system for big capacity, high-rotation drying. Also, verification of this evaluation was executed on fracture strength and fatigue life for studied shaft system.

Mechanical Characteristics of Eccentrically Loaded High Strength Reinforced Concrete Columns (편심하증을 받는 고강도 철근콘크리트 기둥의 역학적 특성)

  • 김인식;최봉섭;권영웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.399-404
    • /
    • 2000
  • This paper are the mechanical characteristics of eccentrically loaded normal strength and high strength reinforced concrete columns based on the test results. The columns are $120\times120$mmat the mid-section and are haunched at the ends to apply the eccentric loading and prevent premature failure. Variables are concrete strengths(361, 672, 974 kgf/$\textrm{cm}^2$), $\textrm{cm}^2$longitudinal reinforcement ratios (1.98, 3.54, 1 5.53%), spacing of lateral reinforcement (30, 60, 120mm), and eccentricities (24, 40mm). As a results, the main conclusions obtained from the comparison and analysis for the strength tendency, deformation and ductility of high strength reinforced concrete columns with variables are as follows; As the concrete compressive strength concrete and lateral reinforcement increases, the ductility index of high strength reinforced concrete columns decrease, but it increase with the increase of eccentricity and longitudinal reinforcement ratio. The confinement ratio must be greater than 20 percent in order for the level of ductility between high strength reinforced concrete columns and normal strength reinforced concrete columns to be almost equal.

  • PDF

Wave Characteristic in the Axially Loaded Axial-Bending-Shear Coupled Composite Laminated Beams (축 방향 하중을 받는 인장-굽힘-전단이 연성된 복합재 적층보의 파동특성)

  • Jang, In-Joon;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2650-2652
    • /
    • 2011
  • The fiber reinforced composite materials have many advantages due to their high strength-to-density ratios. Thus they have been widely used in many industrial applications. As the wave propagation are closely related to dynamic analysis of structures, it is very important to predict them. This paper presents a wave propagation in the axially loaded axial-bending-shear coupled composite laminated beams which are represented by the Timoshenko beam models based on the first-order shear deformation theory.

  • PDF