• 제목/요약/키워드: high intensity wind

검색결과 139건 처리시간 0.022초

동절기 고층건물 풍하면의 기온역전에 관한 연구 (A Study on Inversion at Leeward Side of High-rise Building in Winter)

  • 정해연;김문성;오성남;이규석
    • 환경영향평가
    • /
    • 제19권6호
    • /
    • pp.583-590
    • /
    • 2010
  • To determine nocturnal inversion characteristics at the leeward side of high-rise building, air temperature data were observed at 10 minute interval from February 22, 2010 to April 15, 2010. The observed data were compared, analyzed and examined to illustrate air temperature differences between the roof (XAR) and surface (XAG) of X apartment. The wind speed, wind direction and precipitation data were also observed at XAR and YJL (Yangjae Stream) sites at the same time. After the analysis, the maximum nocturnal inversion was observed by $4.0^{\circ}C$ at 3:40, 3:50, 4:10 on February 24th 2010, at that time the weather condition was clear and weak wind. Air temperature inversions at the leeward side of high-rise building were observed on whole day in wintertime and air temperature inversion intensity was also higher than other nearby area (SMG).

영광 해상풍력단지 발전량 예측에 관한 연구 (The Research on the Yeonggwang Offshore Wind Farm Generated Energy Prediction)

  • 정문선;문채주;정권성;최만수;장영학
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.33-41
    • /
    • 2012
  • As the wind farms in large scale demand enormous amount of construction cost, minimizing the economic burden is essential and also it is very important to measure the wind resources and forecast annual energy production correctly to judge the economic feasibility of the proposed site by way of installing a Met mast at or nearby the site. Wind resources were measured by installing a 80[m] high Met mast at WangdeungYeo Island to conduct the research incorporated in this paper and offshore wind farm was designed using WindPRO. Wind farm of 100[MW] was designed making use of 3 and 4.5[MW] wind generator at the place selected to compare their annual energy production and capacity factor applying the loss factor of 10[%] and 20[%] respectively to each farm. As a result, 336,599[MWh] was generated by applying 3[MW] wind generator while 358,565 [MWh] was produced by 4.5[MW] wind generator. Difference in the energy production by 3[MW] generator was 33,660 [MWh] according to the loss factor with the difference in its capacity factor by 3.8[%]. On the other hand, 23 units of 4.5 [MW] wind generators showed the difference of annual energy production by 35,857 [MWh] with 4.0[%] capacity factor difference.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

Characteristics of thunderstorms relevant to the wind loading of structures

  • Solari, Giovanni;Burlando, Massimiliano;De Gaetano, Patrizia;Repetto, Maria Pia
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.763-791
    • /
    • 2015
  • "Wind and Ports" is a European project that has been carried out since 2009 to handle wind forecast in port areas through an integrated system made up of an extensive in-situ wind monitoring network, the numerical simulation of wind fields, the statistical analysis of wind climate, and algorithms for medium-term (1-3 days) and short term (0.5-2 hours) wind forecasting. The in-situ wind monitoring network, currently made up of 22 ultrasonic anemometers, provides a unique opportunity for detecting high resolution thunderstorm records and studying their dominant characteristics relevant to wind engineering with special concern for wind actions on structures. In such a framework, the wind velocity of thunderstorms is firstly decomposed into the sum of a slowly-varying mean part plus a residual fluctuation dealt with as a non-stationary random process. The fluctuation, in turn, is expressed as the product of its slowly-varying standard deviation by a reduced turbulence component dealt with as a rapidly-varying stationary Gaussian random process with zero mean and unit standard deviation. The extraction of the mean part of the wind velocity is carried out through a moving average filter, and the effect of the moving average period on the statistical properties of the decomposed signals is evaluated. Among other aspects, special attention is given to the thunderstorm duration, the turbulence intensity, the power spectral density and the integral length scale. Some noteworthy wind velocity ratios that play a crucial role in the thunderstorm loading and response of structures are also analyzed.

Determination of 2D solar wind speed maps from LASCO C3 observations using Fourier motion filter

  • Cho, Il-Hyun;Moon, Yong-Jae;Lee, Jin-Yi;Nakariakov, Valery;Cho, Kyung-Suk
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.68-68
    • /
    • 2017
  • Measurements of solar wind speed near the Sun (< 0.1 AU) are important for understanding acceleration mechanism of solar wind as well as space weather predictions, but hard to directly measure them. For the first time, we provide 2D solar wind speed maps in the LASCO field of view using three consecutive days data. By applying the Fourier convolution and inverse Fourier transform, we decompose the 3D intensity data (r, PA, t) into the 4D one (r, PA, t, v). Then, we take the weighted mean along speed to determine the solar wind speeds that gives V(r, PA, t) in every 30 min. The estimated radial speeds are consistent with those given by an artificial flow and plasma blobs. We find that the estimated speeds are moderately correlated with those from slow CMEs and those from IPS observations. A comparison of yearly solar wind speed maps in 2000 and 2009 shows that they have very remarkable differences: azimuthally uniform distribution in 2000 and bi-modal distribution (high speed near the poles and low speed near the equator) in 2009.

  • PDF

5MW급 해상풍력 하부구조물 설계 및 해석에 관한 연구 (The study on substructure design and analysis for 5MW offshore wind turbine)

  • 선민영;이성범;이기열;문병영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1075-1080
    • /
    • 2014
  • 본 연구는 5MW급 해상풍력 하부구조물개발에 있어 설계에 필요한 다양한 해양환경 조건에 대하여 높은 안정성 확보가 요구되는 해상용 풍력발전 하부구조물과 관련, 구조물의 설계방법을 제시하고 그 안정성을 고찰하여 관련 기술 분야에 기여함을 목표로 한다. 특히, 5MW급 해상풍력발전 시스템에 대해 시험영역에서 큰 바람의 방향이 지속되고 있는 동안에 동시에 발달된 파도의 계산에 대한 정보를 제공한다. 그러므로 바람의 영역과 접근하는 파동 행열간의 관련성을 검토하여 강도, 방향 그리고 시간의 이동성을 계산할 수 있음을 확인하였다. 쇄파에서의 국부적인 압력분포를 물리적인 모델링과 수치적 모델링을 통해 조사하는 것이 가능하다. 해상 풍력 에너지 변환장치의 지지구조물들에 대해 최근 적용된 구조 및 피로에 대한 평가는 일반 설계규칙에 근거했다. 5MW 해상풍력 하부구조물은 제약조건이 많아 단일구조로 취급하는데 이는 생산에서 높은 안전계수를 고려해야함을 의미한다.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

소형 풍력발전기 소음 저감을 위한 익형 설계 연구 (Design of Low Noise Airfoil for Use on Small Wind Turbines)

  • 김태형;이승민;김호건;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Observational analysis of wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015)

  • Lin Xue;Ying Li;Lili Song
    • Wind and Structures
    • /
    • 제37권4호
    • /
    • pp.315-329
    • /
    • 2023
  • We investigated the wind characteristics in the near-surface layer during the landfall of Typhoon Mujigae (2015) based on observations from wind towers in the coastal areas of Guandong province. Typhoon Mujigae made landfall in this region from 01:00 UTC to 10:00 UTC on October 4, 2015. In the region influenced by the eyewall of the tropical cyclone, the horizontal wind speed was characterized by a double peak, the wind direction changed by >180°, the vertical wind speed increased by three to four times, and the angle of attack increased significantly to a maximum of 7°, exceeding the recommended values in current design criteria. The vertical wind profile may not conform to a power law distribution in the near-surface layer in the region impacted by the eyewall and spiral rainband. The gust factors were relatively dispersed when the horizontal wind speed was small and tended to a smaller value and became more stable with an increase in the horizontal wind speed. The variation in the gust factors was the combined result of the height, wind direction, and circulation systems of the tropical cyclone. The turbulence intensity and the downwind turbulence energy spectrum both increased notably in the eyewall and spiral rainband and no longer satisfied the assumption of isotropy in the inertial subrange and the -5/3 law. This result was more significant in the eyewall area than in the spiral rainband. These results provide a reference for forecasting tropical cyclones, wind-resistant design, and hazard prevention in coastal areas of China to reduce the damage caused by high winds induced by tropical cyclones.

승용차 후향거울 주위의 3차원 유동특성 해석 (A Study on Flow Analysis of Exterior Rear View Mirror of Passenger Car)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.35-46
    • /
    • 1997
  • In order to satisfy customer's requirements of ride comfort and high performance, it is necessary for designers to fully understand vehicle aerodynamics and wind noise of newly produced cars because characteristics of flow and wind noise are heavily dependent on each other. In this study numerical and experimental study have been carried out to analyse the effect of flow characteristics at around of rear view mirror on wind noise and soiling on the front S/W. As a result, it's found that the spiral flow mear the front pillar is weakened and spreaded because rear view mirror obstructs the flow. It is also shown that there is abrupt change of gradient of separa- tion line, separation area, intensity of spiral flow and turbulent kinetic energy with varying shape of neck and housing of rear view mirror.

  • PDF