• 제목/요약/키워드: high friction region

검색결과 80건 처리시간 0.027초

미끄럼조건에 따라 TiN 코팅볼과 스틸디스크에 형성되는 산화막이 마찰특성에 미치는 영향 (The Effect of Oxide Layer Formed on TiN Coated Ball and Steel Disk on Friction Characteristics in Various Sliding Conditions)

  • 조정우;이영제
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.459-466
    • /
    • 2001
  • In this study, the effects of oxide layer formed on the contact parts of TiN coated ball and steel disk on friction characteristics in various sliding conditions were investigated. AISI52100 steel ball was used for the substrate of coated ball specimens, which were prepared by depositing TiN coating with 1(m in coating thickness. AISI1045 steel was used for the disk type counter-body. To investigate the effect of oxide layer on the contact parts of two materials, the tests were performed both in air for forming oxide layer on the contact parts and in nitrogen environment to avoid oxidation. From the test results, the frictional characteristic between the two materials was predominated by iron oxide layer that formed on wear tract of counter-body and this layer caused friction transition and high friction. And the adhesive wear occurred from steel disk to TiN coated ball caused the formation of oxide layer on counter parts between the two materials.

한국형 기동장비 마찰재의 고온성능 연구 (A Study on the High Temperature Performance of the Brake Materials Built in Korean Model Combat Vehicle)

  • 하상준;정동윤
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.53-60
    • /
    • 2000
  • Organic brake materials are installed in the braking system of korean model combat vehicles. Since the binder resin is decomposed in high temperature region, it may possible to drop the friction force which makes the vehicle stop within the desired distance. This study analyses the braking performance of the brake materials in high temperature region by using the pin-on-disk type friction tester. It is observed radical drop of friction coefficients and rapid increase of wear amounts from the transition temperature. It is due to the formation of oxide layer on the friction surface.

  • PDF

MEASUREMENT OF TURBULENCE CHARACTERISTICS BY USING PARTICLE TRACKING VELOCIMETRY

  • Yoon, Byung-man;Yu, Kwon-kyu;Marian Muste
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.135-142
    • /
    • 2002
  • This study investigates the effects of sediment on the flow characteristics such as velocity distribution, friction velocity, turbulent intensities, Reynolds stress, etc. Particle tracking velocimetry (PTY) is used to measure the vertical flow field. Results show that flow over the high bed-load concentration region has larger values of mean velocity and friction velocity and smaller values of turbulence intensities, compared to those for flow over the low bed-load concentration region.

  • PDF

An Analytical Model of Co-oscillating Tide under Frictional Effect in the Yellow Sea

  • Kang, Sok-Kuh;Chung, Jong-Yul;Kang, Yong-Q.;Lee, Sang-Ryong
    • Journal of the korean society of oceanography
    • /
    • 제34권1호
    • /
    • pp.22-35
    • /
    • 1999
  • The response of the tidal waves to friction effect is investigated in terms of deformation of Kelvin and Poincare modes, The 1st Poincare mode does not exist over the low frequency region less than the critical frequency of omega ${\omega}$${\sqrt{2f}}$, with ${\gamma}$/f=0.0, but the mode comes to exist in the presence of friction. When friction exists and its magnitude increases, the wave number increases, indicating that the wave length of the Poincare mode becomes increasingly short with increasing friction. The damping coefficient gradually increases with increasing friction over the high frequency region, but the trend is reversed over the low frequency region. In case of Kelvin wave the present study substantiates the characters of Kelvin wave examined by Mofjeld (1980) and Lee (1988). Based on the examination of frictional effects on the tidal wave propagation, the co-oscillating tides in the Yellow Sea are examined by considering both the head opening and bottom friction effects. As friction is introduced and increased in addition to partial opening at bay head, the location of the amphidromic point near the Shantung Peninsula moves more southwestward. This southwestward movement of the amphidromic point is increasingly compatible with the observed location of Ogura's or Nishida's tidal chart of the M$_2$ tide.

  • PDF

Surface Texturing에 의한 유압부품의 마찰저감 (Surface Texturing in Hydraulic Machine Components for Friction Reduction)

  • 박태조;김민규
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.27-33
    • /
    • 2016
  • In hydraulic machinery, the hydraulic fluid acts primarily as working fluid and secondarily as a lubricant. Hence, the viscous friction force acting on the sliding components should be reduced to improve the mechanical efficiency. It is now well known that the surface texturing is a useful method for friction reduction. In this study, using a commercial computational fluid dynamics (CFD) code, FLUENT, the lubrication characteristics of a surface textured slider bearing under high boundary pressure difference is studied. The streamlines, velocity profiles, pressure distributions, load capacity, friction force and leakage flowrate are highly affected by the film thickness ratio and the textured region. Partial texturing at the inlet region of the inclined slider bearing can reduce both friction force and leakage flowrate than in the untextured case. The present results can be used to improve the lubrication characteristics of hydraulic machinery.

심리스 튜브 제조용 피어싱 플러그 공구강과 SA210C강의 고온 미끄럼 마모에 미치는 예비산화의 영향 (Effects of Preoxidation on High Temperature Wear of Piercing Plug Tool Steel Sliding Against SA210C Steel Used for Production of Seamless Tube)

  • 최병영;구윤식
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.264-270
    • /
    • 2013
  • Effects of preoxidation on high temperature wear of piercing plug tool steel sliding against SA210C steel used for production of seamless tube have been studied using a pin-on-disc CETR tribometer, under applied normal load of 20 N at $900^{\circ}C$ in air. It was found in the preoxidized pin specimens of piercing plug tool steel that the coefficient of friction decreased to about 0.4 at an initial stage followed by showing nearly constant value of about 0.4 during high temperature wear testing. On the other hand, it was also found in the pin specimens without preoxidation that the coefficient of friction increased and fluctuated, ranging from about 0.3 to 0.6 during the tests until the running period of about 800 sec. The compact and continuous Fe-oxide layer was formed on the contact surface of the preoxidized pin specimens after high temperature wear testing followed by penetrating along the grain boundaries of coarse ferrite in the decarburized region beneath the oxide layer due to the lower hardness of the region.

진원형 정수압 베어링의 해석 (Analysis of Cylindrical Hydrostatic Bearing)

  • 문호지;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1989년도 제10회 학술강연회초록집
    • /
    • pp.94-99
    • /
    • 1989
  • This paper analyzes file stiffness, damping coefficient, friction force and flow coefficient of externally pressurized oil journal beating, including the effect of journal rotation according to the Sommerfeld number. This paper assumed that the oil in the whole pocket has constant pressure, and that the oil in the whole bearing region has constant viscosity, temperature and density. Reynolds equation is derived from Nuvier - Stokes equation and continuity equation. And solved bearing pressure by ADI method for whole bearing region and fitted with out flow rate of pocket region. The model for numerical simulation is hydro - static oil journal bearing for high-speed, high-accuracy lathe spindle.

  • PDF

선급용 고장력강 FSW접합부의 미세조직 및 기계적 성질 (Microstructures and Mechanical Properties of Friction Stir Welded High Strength Steels far Shipbuilding)

  • 장웅성;최기용
    • Journal of Welding and Joining
    • /
    • 제20권3호
    • /
    • pp.67-73
    • /
    • 2002
  • In an attempt to evaluate the feasibility of friction stir welding(FSW) for joining carbon steels, microstructures and mechanical properties of friction stir welded carbon steels with different grain structures were investigated. In comparison of O-type stir zone(SZ) appeared in various aluminium alloys, configuration of SZ in friction stir welded carbon steels displayed U-type. Plastically deformed pearlite band structure was identified to surround the SZ, indicating the existence of so-called thermo-mechanically affected zone(TMAZ). However, the TMAZ of carbon steels was much narrower than that of Al alloys. The microstructures of both stir zone and TMAZ revealed bainite matrix in a conventional carbon steel for shipbuilding, while, in the same region, ferrite matrix microstructures were formed in a low carbon fine grained steel. The conventional carbon steel showed superior stirring workability to that of the fine grained carbon steel. The yield and tensile strength of the friction stir welded joints were comparable to those of the base metals, and the elongation in welded joints demonstrated excellent ductility. Absorbed energy in SZ of the fine grained carbon steel was ten times higher than that obtained from conventional submerged arc weld metal of the same steel. Based on these results, the application FSW to carbon steels was found to be feasible.

곡관부 열전달 성능 강화를 위한 에어포일형 가이드 베인의 형상 최적설계 (SHAPE OPTIMIZATION OF THE AIRFOIL-GUIDE VANES IN THE TURNING REGION FOR A ROTATING TWO-PASS CHANNEL)

  • 문미애;김광용
    • 한국전산유체공학회지
    • /
    • 제17권2호
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents the numerical simulation results of heat transfer and friction loss for a rotating two-pass duct with the airfoil-guide vanes in the turning region. The Kriging model is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of flow field and heat transfer with shear stress transport turbulent model. To improve the heat transfer performance, angle and location of the airfoil-guide vanes have been selected as design variables. The optimization problem has been defined as a minimization of the objective function, which is defined as a linear combination of heat transfer related term and friction loss related term with a weight factor. The airfoil-guide vanes in the turning region keep the high level of heat transfer while the friction loss has a low value. By comparing the presence or absence of airfoil-guide vanes, it is shown that the airfoil-guide vanes exhibited the best heat transfer performance to improve the blade cooling except the first passage.

벌크 비정질 용사코팅과 비정질 기지 복합재료의 건조 마찰특성 (Dry Friction Characteristics of Bulk Amorphous Thermal Spray Coating and Amorphous Metallic Matrix Composites)

  • 장범택;이승훈
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.108-115
    • /
    • 2014
  • The friction behaviors of bulk amorphous thermal spray coating (BAC) and second phase-reinforced composite coatings using a high velocity oxy-fuel spraying process were investigated using a ball-on-disk test rig that slides against a ceramic ball in an atmospheric environment. The surface temperatures were measured using an infrared thermometer installed 50 mm from the contact surface. The crystallinities of the coating layers were determined using X-ray diffraction. The morphologies of the coating layers and worn surfaces were observed using a scanning electron microscope and energy-dispersive spectroscopy. The results show that the friction behavior of the monolithic amorphous coating was sensitive to the testing conditions. Under lower than normal loads, a low and stable friction coefficient of about 0.1 was observed, whereas under a higher relative load, a high and unstable friction coefficient of greater than 0.3 was obtained with an instant temperature increase. For the composite coatings, a sudden increase in friction coefficient did not occur, i.e., the transition region did not exist and during the friction test, a gradual increase occurred only after a significant delay. The BAC morphology observations indicate that viscous plastic flow was generated with low loads, but severe surface damage (i.e., tearing) occurred at high loads. For composite coatings, a relatively smooth surface was observed on the worn surface for all applied loads.