• Title/Summary/Keyword: high flux

Search Result 2,721, Processing Time 0.024 seconds

Development of High-Temperature Heat Flux Gauge for Steel Quenching (강재 급속냉각용 고온 열유속게이지 개발)

  • Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.323-330
    • /
    • 2010
  • The present study was motivated by increasing demands on quantitative measurements of the heat flux through the water cooling and quenching process of hot steel. The local heat flux measurements are employed by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are directly used to measure the heat flux variation during water cooling and quenching of hot steel. The heat flux can be directly achieved by Fourier's law and is also compared with numerical estimation which is solved by inverse heat conduction problem (IHCP). The high-temperature heat flux gauge developed in this study can be applicable to measure cooling rate and history during the actual cooling applications of steelmaking process. In addition, the measurement uncertainty of heat flux is calculated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard.

Measurement of Heat Flux in Rocket Combustors Using Plug-Type Heat Flux Gauges

  • Kim, Min Seok;Yu, I Sang;Kim, Wan Chan;Shin, Dong Hae;Ko, Young Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.788-796
    • /
    • 2017
  • This paper proposes a new measurement method to improve the shortcomings of an existing integral method for measuring heat flux in plug-type heat flux gauges in the high-temperature and high-pressure environments of liquid-rocket combustors. Using the existing integral measurement method, the calculation of the surface area for the heat flux in the gauge exhibits error in relation to the actual surface area. To solve this problem, transient profiles obtained from ANSYS Fluent were used to calculate unsteady heat flux as it adjusted to the measured temperature. First, a heat flux gauge was designed and manufactured specifically for use in the high-temperature and high-pressure conditions that are similar to those of liquid rocket combustors. A calibration test was performed to prove the reliability of the manufactured gauge. Then, a combustion experiment was conducted, in which the gauge was used to measure unsteady heat flux in a liquid rocket combustor that used kerosene and liquid oxygen as propellants. Reasonable heat flux values were obtained using the gauge. Therefore, the proposed measurement method is considered to offer significant improvement over the existing integral method.

Experiment of Flux pump for High Temperature Superconductor Insert coils of NMR magnets (NMR 자석용 고온 초전도 내부 코일을 위한 플럭스 폄프에 대한 실험)

  • 정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.15-20
    • /
    • 2001
  • This paper describes a model flux pump experiment recently performed at the MIT Francis Bitter Magnet Laboratory. The results of the model flux pump will be used in the development of a prototype flux pump that will be couple to a high-temperature superconductor (HTS) insert coil of a high-field NMR (Nuclear Magnetic Resonance) magnet, Such an HTS insert is unlikely to operate in persistent model because of the conductors low index(n) The flux pump can compensate fro field decay in the HTS insert coil and make the insert operate effectively in persistent mode . The flux pump, comprised essentially of a transformer an two switches. all made of superconductor, transfers into the insert coil a fraction of a magnetic energy that is first introduced in the secondary circuit of the transformer by a current supplied to the primary circuit. A model flux pump has been designed. fabricated, and operated to demonstrate that a flux pump can indeed supply a small metered current into a load superconducting magnet. A current increment in the range of microamperes has been measured in the magnet after each pumping action. The superconducting model flux pump is made of Nb$_3$ Sn tape, The pump is placed in a gaseous environment above the liquid helium level to keep its heat dissipation from directly discharged in the liquid: the effluent helium vapor maintains the thermal stability of the flux pump.

  • PDF

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

A Study on Heat Flux Characteristics of Tubular Quartz Lamp for Thermal Load Design of High Temperature Structural Test (석영 가열램프의 열 유속 특성 파악을 통한 고온 구조시험의 열 하중 설계에 관한 연구)

  • Kim, Junhyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.355-363
    • /
    • 2022
  • Development of supersonic flying vehicle is one of the most latest issue in modern military technology. Specifically, structural integrity of supersonic flying vehicle can be verified by high temperature structural test. High temperature structural test is required to consider thermal load caused by aerodynamic heating while applying structural load simultaneously. Tubular quartz lamps are generally used to generate thermal load by emitting infrared radiation. In this study, modified heat flux model of tubular quartz lamp is proposed based on existing model. Parameters of the proposed model are optimized upon measured heat flux in three dimensions. Finally, thermal load of plate specimen is designed by the heat flux model. In conclusion, it is possible to predict heat flux applied on plate specimen and desired thermal load of high temperature structural test can be obtained.

Reducing Cogging Torque by Flux-Barriers in Interior Permanent Magnet BLDC Motor (회전자 자속장벽 설계에 의한 영구자석 매입형 BLDC 전동기 코깅 토오크 저감 연구)

  • Yun, Keun-Young;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.491-497
    • /
    • 2006
  • For high efficiency and easy speed control of brushless DC (BLDC) motor, the demand of BLDC motor is increasing. Especially demand of interior permanent magnet (IPM) BLDC with high efficiency and high power in electric motion vehicle is increasing. However, IPM BLDC basically has a high cogging torque that results from the interaction of permanent magnet magnetomotive force (MMF) harmonics and air-gap permeance harmonics due to slotting. This cogging torque generates vibration and acoustic noises during the driving of motor. Thus reduction of the cogging torque has to be considered in IPM BLDC motor design by analytical methods. This paper proposes the cogging torque reduction method for IPM BLDC motor. For reduction of cogging torque of IPM BLDC motor, this paper describes new technique of the flux barriers design. The proposed method uses sinusoidal form of flux density to reduce the cogging torque. To make the sinusoidal air-gap flux density, flux barriers are applied in the rotor and flux barriers that installed in the rotor produce the sinusoidal form of flux density. Changing the number of flux barrier, the cogging torque is analyzed by finite element method. Also characteristics of designed model by the proposed method are analyzed by finite element method.

A Mechanistic Critical Heat Flux Model for High-Subcooling, High-Mass-Flux, and Small-Tube-Diameter Conditions

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-33
    • /
    • 2000
  • A mechanistic model based on wall-attached bubble coalescence, previously developed by the authors, was extended to predict a vow high critical heat flux (CHF)in highly subcooled flow boiling, especially for high mass flux and small tube diameter conditions. In order to take into account the enhanced condensation due to high subcooling and high mass velocity in small diameter tubes, a mechanistic approach was adopted to evaluate the non-equilibrium flow quality and void fraction in the subcooled water flow boiling, with preserving the structure of the previous CHF model. Comparison of the model predictions against highly subcooled water CHF data showed relatively good agreement over a wide range of parameters. The significance of the proposed CHF model lies in its generality in applying over the entire subcooled flow boiling regime including the operating conditions of fission and fusion reactors.

  • PDF

Introduction of Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO)

  • Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.231-236
    • /
    • 1999
  • Accurate ocean surface fluxes with high resolution are critical for understanding a mechanism of global climate. However, it is difficult to derive those fluxes by using ocean observation data because the number of ocean observation data is extremely small and the distribution is inhomogeneous. On the other hand. satellite data are characterized by the high density, the high resolution and the homogeneity. Therefore, it can be considered that we obtain accurate ocean surface by using satellite data. Recently we constructed ocean surface data sets mainly using satellite data. The data set is named by Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). Here, we introduce J-OFURO. The data set includes shortwave radiation, longwave radiation, latent heat flux, sensible heat flux, and momentum flux etc. Moreover, sea surface dynamic topography data are included in the data set. Radiation data sets covers western Pacific and eastern Indian Ocean because we use a Japanese geostationally satellite (GMS) to estimate radiation fluxes. On the other hand, turbulent heat fluxes are globally estimated. The constructed data sets are used and shows the effectiveness for many scientific studies.

  • PDF

Estimations of the $SO_2$Dry Deposition Flux at Urban Areas in Korea (우리나라 도시지역의 $SO_2$건성침적 플럭스 산출)

  • 이종범;김용국;박일환
    • Journal of Environmental Science International
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out estimating the dry deposition flux of $SO_2$at eight urban areas in Korea during one year of 1996. To calculate the deposition flux, deposition velocities were calculated by turbulence parameters estimated from routine meteorological data. Also, hourly averaged $SO_2$concentrations which calculated from air pollution monitoring data of each city were used. The dry deposition velocities were mostly higher in the coastal areas than the other areas, which would be caused by relatively strong wind. And, they were high in the daytime because of turbulence activities. The deposition flux of $SO_2$is mainly related to the atmospheric concentration. The annual average $SO_2$concentration and the deposition flux were 22.62ppb and 1510.52g/$\textrm{km}^2$/hr at Pusan respectively. Also, the flux was higher in winter than other season, which was a significant contribution of exhausted fuel for heating. While the deposition velocity was high to 0.688cm/sec at Yosu in case of strong wind and small cloud cover, the deposition flux was high to 1597.4g/$\textrm{km}^2$/hr at Pusan in case of weak wind and small cloud cover.

  • PDF