A Mechanistic Critical Heat Flux Model for High-Subcooling, High-Mass-Flux, and Small-Tube-Diameter Conditions

  • Published : 2000.02.01

Abstract

A mechanistic model based on wall-attached bubble coalescence, previously developed by the authors, was extended to predict a vow high critical heat flux (CHF)in highly subcooled flow boiling, especially for high mass flux and small tube diameter conditions. In order to take into account the enhanced condensation due to high subcooling and high mass velocity in small diameter tubes, a mechanistic approach was adopted to evaluate the non-equilibrium flow quality and void fraction in the subcooled water flow boiling, with preserving the structure of the previous CHF model. Comparison of the model predictions against highly subcooled water CHF data showed relatively good agreement over a wide range of parameters. The significance of the proposed CHF model lies in its generality in applying over the entire subcooled flow boiling regime including the operating conditions of fission and fusion reactors.

Keywords

References

  1. J. Weisman and B. S. Pei, 'Prediction of Critical Heat Flux in Flow Boiling at Low Qualities,' Int. J. Heat Mass Transfer 26, 1463 (1983)
  2. C. H. Lee and I. Mudawar, 'A Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling Based on Local Bulk Flow Conditions,' Int. J. Multiphase Row 14, 714 (1988) https://doi.org/10.1016/0301-9322(88)90070-5
  3. G. P. Celata., M. Cumo, A. Mariani, M. Simoncini, and G. Zummo, 'Rationalization of Existing Mechanistic Models for the Prediction of Water Subcooled Row Boiling Critical Heat Flux,' Int. J. Heat Mass Transfer 37, suppl.1, 347 (1994)
  4. G. P. Celata, M. Cumo, and A. Mariani, 'Assessment of Correlations and Models for the Prediction of CHF in Water Subcooled Flow Boiling,' Int. J. Heat Mass Transfer 37, 237 (1994) https://doi.org/10.1016/0017-9310(94)90096-5
  5. F. Inasaka and H. Nariai, 'Evaluation of Subcooled Critical Heat Flux Correlations for Tubes with and without Internal Twist Tapes,' Nucl. Eng. Des. 163, 225 (1996) https://doi.org/10.1016/0029-5493(95)01170-6
  6. Y. M. Kwon and S. H. Chang, 'An Improved Mechanistic Model to Predict Critical Heat Flux in Subcooled and Low Quality Forced Convection Boiling,' J. Korean Nucl. Society 31, 236 (1999)
  7. Y. M. Kwon and S. H. Chang, 'A Mechanistic Critical Heat Flux Model for Wide Range of Subcooled and Low Quality Flow Boiling,' Nucl. Eng. Des. 188, 27 (1999) https://doi.org/10.1016/S0029-5493(99)00025-4
  8. P. Saha and N. Zuber, 'Point of Net Vapor Generation and Vapor Void Fraction in Subcooled Boiling,' Proc. 5th Int. Heat Transfer Conf., Tokyo, Japan, Vol. IV, pp.175-179(1974)
  9. F. W. Staub, 'The Void Fraction in Subcooled Boiling - Prediction of the Initial Point of Net Vapor Generation,' J. Heat Transfer 90, 151 (1968)
  10. S. Levy, 'Forced Convection Subcooled Boiling - Prediction of Vapor Volumetric Fraction,' Int. J. Heat Mass Transfer 10, 951 (1967) https://doi.org/10.1016/0017-9310(67)90071-3
  11. D. R. H. Beattie and P. B. Whalley, 'A Simple Two Phase Frictional Pressure Drop Calculation Method,' Int. J. Multiphase Flow 8, 83 (1982) https://doi.org/10.1016/0301-9322(82)90009-X
  12. G. E. Dix, 'Vapor Void Fractions for Forced Convection with Subcooled Boiling at Low Row Rates,' NEDO-10491, General Electric Company (1971)
  13. O. Styrikovitch, E. I. Nevstrueva, and G. M. Dvorina, 'The Effect of Two Phase Flow Pattern on the Nature of Heat Transfer Crisis in Boiling,' Proc. 4th Int. Heat Transfer Conf., Paris-Versailles, Vol. VI, pp. B 6.10 (1970)
  14. G. P. Celata, 'Critical Heat Flux in Subcooled Flow Boiling,' Proc. of 11th Int. Heat Transfer Conf., Kyongju, Korea, Vol.1, pp.261-277 (1998)
  15. H. Nariai and F. Inasaka, 'Critical Heat Flux and Flow Characteristics of Subcooled Flow Boiling with Water in Narrow Tubes,' O. C. Jones and I. Michiyoshi (Ed), Dynamics of Two-Phase Flows, CRC Press, pp.689-708 (1992)
  16. S. Z. Rouhani and E. Axelsson, 'Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Region,' Int. J. Heat Mass Transfer 13, 383 (1970)
  17. R. W. Bowring, 'Physical Model Based on Bubble Detachment and Calculation of Steam Voidage in the Subcooled Region of a Heated Channel,' Report HPR-10, Inst. For Atomenergi, Halden, Norway (1962)
  18. R. T. Lahey Jr. and F. J. Moody, 'The Thermal-Hydraulics of a Boiling Water Nuclear Reactor,' American Nuclear Society, 2nd edn., La Grange Park, Illinois. Chapter 5 (1993)
  19. O. Levenspiel, 'Collapse of Steam Bubbles in Water,' Ind. Eng. Chem. 51 (1959)
  20. B. Thompson and R. V. Macbeth, 'Boiling Water Heat Transfer in Uniformly Heated Round Tubes: A Compilation of World Data with Accurate Correlations,' AEEW-R-356 (1964)
  21. K. M. Becker and G. Strand et al., 'Round Tube Burnout Data for Flow of Boiling Water at Pressure between 30 and 200 bar,' Report KTH-NEL-14 (1971)
  22. A. Zenkevich, 'Analysis and Generalization of Experimental Data on Heat Transfer Crisis Associated with Forced Convection of Cooling Water in Tubes,' AECL-Tr-Misc-304 (1974)
  23. Y. Chen, R. Zhou, L. Hao, and H. Chen, 'Critical Heat Flux with Subcooled Boiling of Water at Low Pressure,' 8th Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Kyoto, Japan, Vol. 2, pp.958-964 (1997)
  24. R. D. Boyd, 'Subcooled Water Flow Boiling Experiments under Uniform High Heat Flux Conditions,' Fusion Technology 13, 131 (1988)
  25. R. D. Boyd, 'Sub cooled Water Row Boiling at 1.66 MPa under Uniform High Heat Flux Conditions,' ASME Winter Annual Meeting, HTD Vol.119, pp.91-15 (1989)
  26. R. D. Boyd, 'Subcooled Water Flow Boiling Transition and the LID Effect on CHF for a Horizontal Uniformly Heated Tube,' Fusion Technology 18, 317 (1990)
  27. H. Nariai, F. Inasaka, and H. Kinoshita, 'Critical Heat Rux of Subcooled Row Boiling with and without Internal Twisted Tape under Circumferentially Non-uniform Heating Condition,' Proc. German-Japanese Sympo. On Multiphase Flow, pp.191-205 (1994)
  28. S. Y. Ahmad, 'Axial Distribution of Bulk Temperature and Void Fraction in a Heated Channel with Inlet Subcooling,' Trans. ASME, J. Heat Transfer 92, 595 (1970)
  29. A. P. Ornatskii and L. S. Vinyarskii, 'Heat Transfer Crisis in a Forced Flow of Underheated Water in Small-bore Tubes,' High Temperature 3, 400 (1965)
  30. F. Inasaka and H. Nariai, 'Critical Heat Flux of Subcooled Flow Boiling for Water in Uniformly Heated Straight Tubes,' Fusion. Eng. Des. 19, 329 (1992) https://doi.org/10.1016/0920-3796(92)90007-Q
  31. C. L. Vandervort, A. E. Bergles, and M. K. Jensen, 'An Experimental Study of Critical Heat Rux in Very High Heat Flux Subcooled Boiling,' Int. J. Heat Mass Transfer 37, 161 (1994) https://doi.org/10.1016/0017-9310(94)90019-1
  32. G. P. Celata, M. Cumo, and A. Mariani, 'Burnout in Highly Subcooled Water Flow Boiling in Small Diameter Tubes,' Int. J. Heat Mass Transfer 36, 1269 (1993) https://doi.org/10.1016/S0017-9310(05)80096-1