• Title/Summary/Keyword: high fluvial surface

Search Result 18, Processing Time 0.029 seconds

Paleo-red Soil on the High Fluvial Surface in the Middle Basin of Nam-Han River (남한강 중류 하성고위면의 고적색토)

  • Kang, Young-Pork;Lee, Sang-Min
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.828-835
    • /
    • 2005
  • The purpose of this study is to clarify the landform development of fluvial terrace and the soil characteristics occurring on the terrace deposit. In order to achieve the purpose, the characteristics of soil profiles, the physic-chemical properties of soils that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated. The horizon of Al in the high fluvial surface is silt clay loam of red (2YR 4/6). The soil structure is a developed granular structure. The horizon of B1 is silt clay reddish-brown (2.5YR 4/6). The soil structure is a medium subangular blocky structure. This red soil structure is made on heavy textured and compactly packed parent materials of high terrace sediments and usually has A-B-C profile. In most cases, clay accumulations in B-horizon and clay cutans on ped surfaces are observed, which mean the formation of agrillic horizon. As the result of this study, soils derived from fluvial terrace deposits on high fluvial surfaces are considered paleo-red soil which were developed by pedogenese-strong desilicification and rubefaction and strong leaching of bases- under warmer bio-climatic condition during in the old Pleistocene period.

Soil Characteristics on the Fluvial Surface in the Basin of Kyeongan-cheon (Stream) (경안천 유역 하성면에 발달한 토양 특성)

  • Kang, Young-Pork;Sin, Kwang-Sig
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.548-556
    • /
    • 2006
  • The purpose of this study is to clarify the relict landform development of fluvial terrace and the soil characteristics occurring on the fluvial deposits. The physico-chemical properties of soil that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated specifically. The horizon of $A_1$ consists of silt loam with reddish-brown color (5YR4/3). Its soil structures is a weak, fine, subangular, and blocky, breaking to granular. The horizon of $B_{1t}\;and\;B_{2t}$ are silt clay with either a yellowish red (5YR5/6), bright red (2.5YR4/6) color. This soil structure is weak, subangular, and blocky, with thin discontinuous bright red (2.5YR4/6) clay cutans and soft manganese concretions. This red soil structure is made on heavy-textures. It is packed compactly with parent materials of high fluvial surface sediments, and usually has a $A_1-B_{1t}-B_{2t}-C$ profile, from top to bottom. In most cases, clay accumulation in the B-horizon and clay cutans on ped surfaces are observed, which means the argillic horizon has formed. The soils derived from fluvial surface deposits are associated with soils. The soils on the high fluvial surface are considered to be a kind of paleo-red soil which were developed by strong desilicification and rubefaction, and strong leaching of bases under warmer bio-climatic condition during the old Pleistocene period. According to these morphological and anlaytical characteristics,geomorphological features and bio-climatic conditions under which the soil have developed on the high terrace sediment indicate that the soil should be classified as paleo-red soils.

The Variation of Hydro-Geomorphological Environment in Baekgok Wetland due to Water-Level Fluctuation of Reservoir (댐 수위 변동에 따른 백곡습지의 수문지형 환경 변화)

  • Kim, Dong Hyun;Park, Jongkwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-50
    • /
    • 2017
  • This study was conducted to analyze the variation of hydro-geomorphological environment along Baekgok wetland, which experiencing periodical inundation, in that water-level fluctuation of reservoir caused by irrigation. Since the field data is unavailable, modeling techniques, involving models such as HSPF and TELEMAC-2D, have been applied to simulate hydrological cycle in watershed and hydrodynamics in channel scale. The result of simulation indicates that the water-level of reservoir determines both the water surface extension and water depth in the wetland. Furthermore, it also shows that water-level functions as a spatial limit factor for a fluvial environment and woody vegetation such as willow. The fact of which the scale of water-level fluctuation being larger than an average topographical relief along the wetland can explain the result. While the water-level kept high, the wetland is submerged and waterbody becomes lentic. In contrast, while the water-level is lowered, fluvial phenomena of which being dependent on flow rate and channel shape become active. Hence, the valid fluvial process is likely to take place only for 4 months annually just near the channel, and it advances to a conclusion expecting a deposition to be dominant among the wetland except for such area. It is anticipated that such understanding can contribute to establishing plans to preserve the geomorphological and ecological value of the Baekgok wetland.

Characteristicsin Spatial Distribution of Incision and Uplift Based on the Highest Level Terraces Around the Taebaek Mountains (하안단구 최고위면에 기초한 태백 산지 일대의 하각과 융기의 공간 분포 특성)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.2
    • /
    • pp.31-42
    • /
    • 2018
  • This study analyzes the spatial distribution of the highest level terrace which can be regarded as an initial land surface before the uplift of the Taebaek Mountains and estimates spatial characteristics of the incision and uplift rates around the Mountains. The altitude above the riverbed of the 54 highest level terraces seems to be greatly influenced by the incision of large stream and their elevation shows a high correlation with the uplift of the Mountains. The elevation of the terraces in the north and middle parts decreases westward with a rate of 5~6 m/km and meets with the sea level at area 100~120 km apart from the Mountains. Therefore, it can be suggested that the west coast of Korea might have generally experienced subsidence during the Quaternary. The elevation of the terraces suggests that area with a direction of N-S or NNW-SSE from Yeoryang-myeon, Jeongseon-gun to Taebaek-si shows the highest uplift rate around the Mountains and area with a direction of N-S connecting Girin-myeon, Inje-gun and Pyeongchang-eup, Pyeongchang-gun also indicates a high uplift rate.

Estuarine Behavior and Flux of Nutrients in the Seomjin River Estuary (섬진강 하구역에서 영양염의 하구내 거동과 플럭스)

  • 권기영;문창호;이재성;양성렬;박미옥;이필용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.153-163
    • /
    • 2004
  • In order to estimate the nutrient flux of the Seomjin River into the coastal waters of South Sea, and to understand the estuarine reactions during mixing between river water and seawater, we collected surface water along the salinity gradient in the Seomjin River estuary from Mar. 1999 to Apr. 2001. We found that nitrate and silicate were delivered by fluvial input, while phosphate was, supplied from disposed wastes in the Gwangyang Bay. Mean annual flux of dissolved inorganic nitrogen (DIN), phosphate and silicate into the Gwangyang Bay was estimated 10.9 molesㆍsec$^{-1}$(4,820 tonnesㆍyr$^{-1}$), 0.07 molesㆍsec$^{-1}$(68 tonnesㆍyr$^{-1}$), 13.3 molesㆍsec$^{-1}$(11,747 tonnesㆍy$^{-1}$), respectively. An evident removal of phosphate, silicate and ammonium at the mid-salinity zone during the dry season was attributed to the active uptake of phytoplankton, and consequently nutrient flux into the Gwangyang Bay was low. Whereas, during the flood season in summer, conservative or additional distribution of the nutrients was observed in the estuary. As a rsult nutrient flux into the Gwangyang Bay was maintained high. High concentrations of chlorophyll a and the active removal of nutrient during the dry season at the mid-salinity zone suggest that nutrient distribution in the Seomjin River estuary was mainly controlled by biological processes and nutrient fluxes into the Gwangyang Bay might be significantly modified of by the primary production.

The Formative Processes and Ages of Paleo-coastal Sediments in Dangjeong-ri, Seocheon-gun in the Western Coast, South Korea: Evaluation of the Mode and Strain Rate of the Late Quaternary Tectonism (III) (서해안 서천군 당정리 일대에 분포하는 육상 고해안 퇴적물의 형성 과정과 형성 시기: 한반도 제4기 후기 지각운동의 양식과 변형률 산출을 위한 연구(III))

  • Shin, Jae-Ryul;Hong, Yeong-Min;Hong, Seongchan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • A number of unconsolidated deposits, consisting of a layer of gravels and silt, are found in Dangjeong-ri, Seocheon-gun in the western coast. From below in the stratigraphic sequence, the gravel layer ranging up to a maximum thickness of about 2 meters is interpreted as being formed by fluvial processes of an old channel (Dangjeong S.), and the overlying silt or sandy silt layer of 2 to 3 thickness meters is assumed to be emerged paleo-tidal sediments which was deposited in low tidal-energy environments. As the results of rock surface IRSL datings, the depositional ages of gravels are confirmed as ca. 78,000 ~ 83,000 years BP, indicating that the layer was formed in response to a high-stand sea level of MIS 5a along the Dangjeongcheon estuary. It is presumed that the relative height of 4.5 meter between the altitude of the stream bed (9.5 m) and the altitude of the bedrock boundary in the gravel layer (14 m) indicates the uplift amount since deposition. Paleo-sedimentary environments and an altitude of paleo-shoreline in the study area will be discussed with additional age dating focused on the silt layer.

Changes in the Riverbed Landforms Due to the Artificial Regulation of Water Level in the Yeongsan River (인위적인 보 수위조절로 인한 영산강 하도 지형 변화)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • A river bed which is submerged in water at high flow and becomes part of the river at low flow, serves as a bridge between the river and the land. The channel bar creates a unique ecosystem with vegetation adapted to the particular environment and the water pool forms a wetland that plays a very important role in the environment. To evaluate anthropogenic impacts on the river bed in the Middle Yeongsangang River, the fluvial landforms in the stream channel were analyzed using multi-temporal remotely-sensed images. In the aerial photograph of 2005 taken before the construction of the large weirs, oxbow lakes, mid-channel bars, point bars, and natural wetlands between the artificial levees were identified. Multiple bars divided the flow of stream water to cause the braided pattern in a particular section. After the construction of the Seungchon weir, aerial photographs of 2013 and 2015 revealed that most of the fluvial landforms disappeared due to the dredging of its riverbed and water level control(maintenance at 7.5El.m). Sentinel-2 images were analyzed to identify differences between before and after the opening of weir gate. Change detection was performed with the near infrared and shortwave infrared spectral bands to effectively distinguish water surfaces from land. As a result, water surface area of the main stream of the Yeongsangang River decreased by 40% from 1.144km2 to 0.692km2. A large mid-channel bar that has been deposited upstream of the weir was exposed during low water levels, which shows the obvious influence of weir on the river bed. Newly formed unvegetated point bars that were deposited on the inside of a meander bend were identified from the remotely sensed images. As the maintenance period of the weir gate opening was extended, various habitats were created by creating pools and riffles around the channel bars. Considering the ecological and hydrological functions of the river bed, it is expected that the increase in bar areas through weir gate opening will reduce the artificial interference effect of the weir.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

Fluvial Deposits Distributed along the Seomjin River (섬진강 유역의 하성 퇴적층에 관한 연구)

  • You, Hoen-Su;Cho, Seok-Hee;Koh, Yeong-Koo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.174-187
    • /
    • 2000
  • The Quaternary coarse-grained sandy sediments are distributed along the channels of Seomjin River. The fluvial sediments were sedimentologically studied in horizontal and vertical distributions. To analyze depositional environments and facies changes in the sediments, sediment sampling from river mouth to upper stream and desctriptive approaches to the sediment profiles outcropped near Kurye were carried out. The sediments along the stream lines of the river are assigned to very coarse to coarse sand in grain size. The sediment grains are widely scattered in sorting and moderately sorted in average. For skewness and kurtosis, the sediments ranges from very fine to very coarse skewed and from very lepto-kurtic to extremelyl epto-kurtic states, respectively. The sediments are divided into slightly gravelly sand, gravelly sand and sandy gravel in sediment type. The pain shape in the sandy sediments are dominant in equant and tabular forms showing wide varieties. The sandy sediments are mostly poorly sorted and are highly variable in surface texture with SEM. Some smaller grains in the sediments ordinarily show polished surfaces. Of those grains, quartz ones are commonly angular to surounded. On the basis of facies changes and sedimentary structures, outcropped fluvial sediment profiles in Kurye are classified into xGyS, mGyS, gGyS, xSM, xS, mS, mGyM, IgM in facies. These eight facies are reformed as facies assemblage I and ll. The facies assemblage I and II are interpreted as the products of the channel deposits in braided stream and flood plain ones besides channels, respectively. The change facies assemblage I with facies assemblage ll imply that depositional environments hadbeen migrated from braied sream to flood plain ones.

  • PDF