• Title/Summary/Keyword: high fat diet induced obese

Search Result 386, Processing Time 0.022 seconds

The Effect of Dietary Modified Potato Starch By Chemically Denatured Treatment and Potato Starch on the Weight Loss, Lipid Metabolism and Redox Antioxidant System in High Fat Diet-Induced Obese Rats (화학적 변성 및 생감자 전분이 고지방식이로부터 유도된 비만 흰쥐의 지질대사 및 항산화계에 미치는 영향)

  • Park, Soo-Jin;Choi, Mi-Kyeong;Kim, Jin-Suk;Lim, Hak-Tea;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1251-1257
    • /
    • 2008
  • For the first 42 days, we made rats obese by feeding them potato starch instead of corn starch and after that we fed them transformed potato starch by 4 groups for 70 days. The 4 groups are GPS group, SPS group, EZ group and H40 groups and each were fed normal potato, small potato, enzyme treated potato, and acid treated potato starches, respectively. We determined body weight and feeding efficiency, lipid profiles in serum, lipid peroxidation in tissues and redox antioxidant system as GSH and GP-x in vivo. As a result, there was no difference in the increment of body weight in the groups of GPS, EZ and H40. Therefore EZ group showed lower body weight increment than other groups. While GPS group and SPS group did not show significant difference in blood glucose, cholesterol level, LDL-cholesterol and TC, and their measured values were lower than those of EZ and H40 groups. No significant difference was found in HDL-cholesterol level except for GPS group. Furthermore, when calculating atherogenic index (AI) by HDL-cholesterol and TC contents, H40 group showed higher measured value than other groups. When measuring the lipid peroxidation in serum, kidney and liver tissues, the serum lipid peroxidation in H40 group was higher than others. In the tissue of liver and kidney, EZ and H40 groups showed significantly lower contents than others. The content of GSH showed different tendency in each tissue, but the measured value of GP-x activity was lower in SPS group.

Ginsenoside compound-Mc1 attenuates oxidative stress and apoptosis in cardiomyocytes through an AMP-activated protein kinase-dependent mechanism

  • Hong, So-hyeon;Hwang, Hwan-Jin;Kim, Joo Won;Kim, Jung A.;Lee, You Bin;Roh, Eun;Choi, Kyung Mook;Baik, Sei Hyun;Yoo, Hye Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.664-671
    • /
    • 2020
  • Background: Ginsenoside compound-Mc1 (Mc1) is a member of the deglycosylated ginsenosides obtained from ginseng extract. Although several ginsenosides have a cardioprotective effect, this has not been demonstrated in ginsenoside Mc1. Methods: We treated H9c2 cells with hydrogen peroxide (H2O2) and ginsenoside Mc1 to evaluate the antioxidant effects of Mc1. The levels of antioxidant molecules, catalase, and superoxide dismutase 2 (SOD2) were measured, and cell viability was determined using the Bcl2-associated X protein (Bax):B-cell lymphoma-extra large ratio, a cytotoxicity assay, and flow cytometry. We generated mice with high-fat diet (HFD)-induced obesity using ginsenoside Mc1 and assessed their heart tissues to evaluate the antioxidant effect and the fibrosis-reducing capability of ginsenoside Mc1. Results: Ginsenoside Mc1 significantly increased the level of phosphorylated AMP-activated protein kinase (AMPK) in the H9c2 cells. The expression levels of catalase and SOD2 increased significantly after treatment with ginsenoside Mc1, resulting in a decrease in the production of H2O2-mediated reactive oxygen species. Treatment with ginsenoside Mc1 also significantly reduced the H2O2-mediated elevation of the Bax:Bcl2 ratio and the number of DNA-damaged cells, which was significantly attenuated by treatment with an AMPK inhibitor. Consistent with the in vitro data, ginsenoside Mc1 upregulated the levels of catalase and SOD2 and decreased the Bax:B-cell lymphoma-extra large ratio and caspase-3 activity in the heart tissues of HFD-induced obese mice, resulting in reduced collagen deposition. Conclusion: Ginsenoside Mc1 decreases oxidative stress and increases cell viability in H9c2 cells and the heart tissue isolated from HFD-fed mice via an AMPK-dependent mechanism, suggesting its potential as a novel therapeutic agent for oxidative stress-related cardiac diseases.

Anti-Obesity Effect of Red Garlic Composites in Rats Fed a High Fat-Cholesterol Diet (고지방-콜레스테롤 식이성 흰쥐에서 홍마늘 복합물의 항비만 효과)

  • Lee, Soo-Jung;Hwang, Cho-Rong;Kang, Jae-Ran;Shin, Jung-Hye;Kang, Min-Jung;Sung, Nak-Ju
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.671-680
    • /
    • 2012
  • Three kinds of dietary composites-R+T, R+F, and R+TF-were combined in green tea (T), dietary fiber (F), and green tea dietary fiber mixture (TF) to red garlic extract (RG), respectively. The effects of their diets on anti-obesity were investigated $in$ $vitro$ and $in$ $vitro$ in obese rats induced high fat-cholesterol. In $in$ $vivo$ rats, the total phenolic content of the R+T and R+TF was 1.9~2.0 times higher, and their total cholesterol adsorption was 9.5~11.5 times higher than that of RG. $In$ $vivo$, male Sprague-Dawley rats were divided into 6 groups (Normal, HFC, HRG, HR+T, HR+F and HR+TF). Afterwards, the diets of the HRG, HR+T, HR+F, and HR+TF groups were supplemented with 1% of RG and its dietary composites (R+T, R+F, and R+TF) for 4 weeks, respectively. The final body weight of the HRG, HR+T, HR+F, and HR+TF groups decreased significantly compared to the group fed high fat-cholesterol (HFC), but the food efficiency ratio was not significantly different from the HFC group. The liver weight of the HFC group doubled compared to the normal group, whereas that of HR+T and HR+TF groups decreased significantly. The weight of visceral and epididymal fat decreased significantly in the groups fed the composites compared to the HFC group. The obesity index of HR+TF group decreased significantly only when compared to the HFC group. The serum lipid profile such as total lipids, cholesterol, triglyceride, LDL- and VLDL-cholesterol, as well as the atherogenic index and cardiac risk factors decreased drastically in all experimental groups compared to the HFC group, and the levels of HR+T, HR+F and HR+TF groups were a similar trend. GPT activity was not significantly different among the groups fed the composites, and it decreased significantly in the HRG group. The content of the lipid peroxide level decreased significantly in the HRG group and in the groups fed the composites, compared to the HFC group. Serum antioxidant activity was the highest in the HR+T group. We suggest that the hypolipidemic and anti-obesity effect of the RG composites, achieved by mixing green tea extract and/or dietary fiber, was due to their total phenolic content and total cholesterol adsorption effect.

Effect of Spirodela polyrhiza on Antioxidant Activity in Diet-induced Obese Rats (고지방 및 고콜레스테롤 식이로 유도 된 비만 쥐에서 부평초의 간 조직에서의 항산화 활성에 미치는 영향)

  • Song, Won-Yeong;Choi, Jeong-Hwa
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.488-495
    • /
    • 2021
  • The aim of this study was to investigate the possible antioxidant effect of Spirodela polyrhiza (SP) on rats fed a high fat and high cholesterol diet supplemented with either 5% (SPA group) or 10% (SPB group) SP for 4 weeks. The hepatic SOD activity of the HF group significantly decreased compared to that of the N group, but that of the SPA and SPB groups significantly increased. The GPx activity of the SPA and SPB groups in the liver was significantly greater than that of the HF group, and the hepatic catalase activity of the SPA and SPB groups significantly increased compared to the HF group. The hepatic superoxide radical content of the mitochondria and microsomes of the HF group significantly increased compared to that of the N group, but the contents were reduced in the group that took SP powder. The hepatic hydrogen peroxide content in the cytosol and mitochondria of the SP powder group was lower than in the HF group. The carbonyl content in the mitochondria and microsomes of the SPA and SPB groups was significantly lower than in the HF group. The TBARS values in the liver significantly decreased in the SPA and SPB groups. Spirodela polyrhiza was thus effective in reducing oxidative stress by regulating the hepatic antioxidant enzymes and the free radicals in rats fed high fat and high cholesterol diets.

Antioxidative Activities of the Codonopsis lanceolata Extract in vitro and in vivo (더덕(Codonopsis lanceolata) 추출물의 in vitro 및 in vivo 항산화 효과)

  • Kim, Soo-Hyun;Chung, Mi-Ja;Jang, Hae-Dong;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.193-202
    • /
    • 2010
  • In vitro activities of Codonopsis lanceolata (CL) 70% ethanol extract and its fractions (hexane, chloroform, ethyl acetate, butanol and water) were examined by total polyphenol content, reducing power, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), 2,2-diphenyl-$\beta$-picrylhydrazyl (DPPH), and oxygen radical absorbance capacity (ORAC) assays. The ethyl acetate fraction from CL ethanol extract (CLEA) showed the highest total polyphenol content (22.7 mg/g) among five fractions, and also exhibited an excellent reducing power (0.42~1.27 at $250\sim1,000\;{\mu}g/mL$). CLEA at $100\sim400\;{\mu}g/mL$ concentrations had 27.7~70.3% of ABTS radical scavenging activity and the highest DPPH radical scavenging activity (81.6% at $400\;{\mu}g/mL$). CLEA had dominantly higher $ORAC_{{ROO}{\cdot}}$activity compared to other fractions. CLEA and butanol fraction had significantly higher $ORAC_{{OH}{\cdot}}$ activities than 70% ethanol extract, hexane, chloroform and water fractions. The CLEA exhibited the highest antioxidant activity in CL 70% ethanol extract and its fractions. Thus, effect of CLEA treatment on antioxidant gene expression under the oxidative stress conditions by a high fat diet in animal model was studied by microarray and RT-PCR methods. The 31 antioxidant genes were expressed but the genes were not up-regulated at least a two-fold by CLEA treatment. We concluded that CLEA does not have an indirect antioxidant effect but a direct antioxidant effect by up-regulation of antioxidant genes in high fat diet-induced obese mice.

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.