• Title/Summary/Keyword: high expression promoter

Search Result 280, Processing Time 0.023 seconds

Construction of a Recombinant Bacillus velezensis Strain as an Integrated Control Agent Against Plant Diseases and Insect Pests

  • Roh, Jong-Yul;Liu, Qin;Choi, Jae-Young;Wang, Yong;Shim, Hee-Jin;Xu, Hong Guang;Choi, Gyung-Ja;Kim, Jin-Cheol;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1223-1229
    • /
    • 2009
  • To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice (형질전환 벼에서 brazzein 감미단백질의 안정적인 발현)

  • Lee, Ye Rim;Akter, Shahina;Lee, In Hye;Jung, Yeo Jin;Park, So Young;Cho, Yong-Gu;Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Plant Biotechnology
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Brazzein is the smallest sweet protein and was isolated from the fruit pulp of Pentadiplandra brazzeana Baillon, native to tropical Africa. From ancient times, the indigenous people used this fruit in their diet to add sweetness to their daily food. Brazzein is 500 to 2000 times sweeter than sucrose on a weight basis and 9500 times sweeter on a molar basis. This unique property has led to increasing interest in this protein. However, it is expensive and difficult to produce brazzein other than in its native growing conditions which limits its availability for use as a food additive. In this study, we report high production yields of, brazzein protein in transgenic rice plants. An ORF region encoding brazzein and driven by the $2{\times}CaMV\;35S$ promoter was introduced into rice genome (Oryza sativa Japonica) via Agrobacterium-mediated transformation. After transformation, 17 regenerated plant lines were obtained and these transgene-containing plants were confirmed by PCR analysis. In addition, the selected plant lines were analyzed by Taqman PCR and results showed that 9 T0 lines were found to have a single copy out of 17 transgenic plants. Moreover, high and genetically stable expression of brazzein was confirmed by western blot analysis. These results demonstrate that recombinant brazzein was efficiently expressed in transgenic rice plants, and that we have developed a new rice variety with a natural sweetener.

Molecular Cloning and Characterization of a Bile Salt Hydrolase from Lactobacillus acidophilus PF01

  • Oh, Hae-Keun;Lee, Ji-Yoon;Lim, Soo-Jin;Kim, Min-Jeong;Kim, Geun-Bae;Kim, Jung-Hoan;Hong, Soon-Kwang;Kang, Dae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.449-456
    • /
    • 2008
  • Phenotypic screening for bile salt hydrolase (BSH) activity was performed on Lactobacillus acidophilus PF01 isolated from piglet feces. A gene encoding BSH was identified and cloned from the genomic library of L. acidophilus PF01. The bsh gene and surrounding regions were characterized by nucleotide sequence analysis and were found to contain a single open reading frame (ORF) of 951 nucleotides encoding a 316 amino acid protein. The potential bsh promoter region was located upstream of the start codon. The protein deduced from the complete ORF had high similarity with other BSHs, and four amino acid motifs located around the active site, FGRNXD, AGLNF, VLTNXP, and GXGXGXXGXPGD, were highly conserved. The bsh gene was cloned into the pET21b expression vector and expressed in Escherichia coli BLR(DE3) by induction with 0.1mM of isopropylthiogalactopyranoside. The BSH enzyme was purified with apparent homogeneity using a $Ni^{2+}$-NTA agarose column and characterized. The overexpressed recombinant BSH enzyme of L. acidophilus PF01 exhibited hydrolase activity against tauroconjugated bile salts, but not glycoconjugated bile salts. It showed the highest activity against taurocholic acid. The maximum BSH activity occurred at approximately $40^{\circ}C$. The enzyme maintained approximately 70% of its maximum activity even at $60^{\circ}C$, whereas its activity rapidly decreased at below $37^{\circ}C$. The optimum pH was 6, and BSH activity was rapidly inactivated below pH 5 and above pH 7.

Export of Human Proinsulin in E. coli : High Export of Proinsulin Fusion Protein but not of Proinsulin Itself (대장균에서 인체 프로인슐린의 분비 발현 : 프로인슐린 융합체의 고분비 발현과 프로인슐린의 저분비 발현)

  • Yup Kang
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.165-172
    • /
    • 1996
  • To obtain a correctly folded human proinsulin, export of proinsulin using Staphylococcal protein A signal sequence-mediated secretion pathway has been attempted in E.coli. A secretion operon for proinsulin was constructed by consecutively connecting T7 promoter, SPA ribosome binding site, SPA signal sequence gene, and human proinsulin gene. Little immunoreactive proinsulin was detected in the periplasmic space and. culture medium, and not even in cytoplasmic space. The qualitative analysis of transcribed proinsulin mRNA and the in vitro transcription/translation experiment suggests that the negligible level of proinsulin export appears to be due to intracellular degradation of proinsulin, rather than due to the blockage during translocation. However, expression of proinsulin fusion protein such as MBP-proinsulin could dramatically increase export of proinsulin in E.coli.

  • PDF

Characterization of Copper/Zinc-Superoxide Dismutase (Cu/Zn-SOD) Gene from an Endangered Freshwater Fish Species Hemibarbus mylodon (Teleostei; Cypriniformes)

  • Lee, Sang-Yoon;Kim, Keun-Yong;Bang, In-Chul;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.1
    • /
    • pp.43-54
    • /
    • 2011
  • Gene structure of copper/zinc-superoxide dismutase (Cu/Zn-SOD; sod1) was characterized in Hemibarbus mylodon (Teleostei; Cypriniformes), an endangered freshwater fish species in Korean peninsula. Full-length cDNA of H. mylodon SOD1 consisted of a 796-bp open reading frame sequence encoding 154 amino acids, and the deduced polypeptide sequence shared high sequence homology with other orthologs, particularly with regard to metal-coordinating ligands. Genomic structure of the H. mylodon sod1 gene (hmsod1; 1,911 bp from the ATG start codon to the stop codon) was typical quinquepartite (i.e., five exons interrupted by four introns); the lengths of the exons were similar among species belonging to various taxonomic positions. The molecular phylogeny inferred from sod1 genes in the teleost lineage was in accordance with the conventional taxonomic assumptions. 5'-flanking upstream region of hmsod1, obtained using the genome walking method, contained typical TATA and CAAT boxes. It also showed various transcription factor binding motifs that may be potentially involved in stress/immune response (e.g., sites for activating proteins or nuclear factor kappa B) or metabolism of xenobiotic compounds (e.g., xenobiotic response element; XRE). The hmsod1 transcripts were ubiquitously detected among tissues, with the liver and spleen showing the highest and lowest expression, respectively. An experimental challenge with Edwardsiella tarda revealed significant upregulation of the hmsod1 in kidney (4.3-fold) and spleen (3.1-fold), based on a real-time RT-PCR assay. Information on the molecular characteristics of this key antioxidant enzyme gene could be a useful basis for a biomarker-based assay to understand cellular stresses in this endangered fish species.

Effects of Glycerol and Shikimic Acid on Rapamycin Production in Streptomyces rapamycinicus

  • La, Huyen Thi Huong;Nguyen, Thao Kim Nu;Dinh, Hang Thuy;Nguyen, Quyen Minh Huynh;Nguyen, Minh Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.296-302
    • /
    • 2020
  • Rapamycin, derived from Streptomyces rapamycinicus, is an important bioactive compound having a therapeutic value in managing Parkinson's disease, rheumatoid arthritis, cancer, and AIDS. Because of its pharmaceutical activity, studies over the past decade have focused on the biosynthesis of rapamycin to enhance its yield. In this study, the effect of rapG on rapamycin production was investigated. The rapG expression vector was constructed by utilizing the integration vector pSET152 under the control of the erythromycin resistance gene (ermE), a strong constitutive promoter. The rapamycin yield of wild type (WT) and WT/rapG overexpression mutant strains, under fermentation conditions, was analyzed by high-performance liquid chromatography (HPLC). Our results revealed that overexpression of rapG increased rapamycin production by approximately 4.9-fold (211.4 mg/l) in MD1 containing 15 g/l of glycerol, compared to that of the WT strain. It was also found that Illicium verum powder (10 g/l), containing shikimic acid, enhanced rapamycin production in both WT and WT/rapG strains. Moreover, the amount of rapamycin produced by the WT/rapG strain was statistically higher than that produced by the WT strain. In conclusion, the addition 15 g/l glycerol and 15 g/l I. verum powder produced the optimal conditions for rapamycin production by WT and WT/rapG strains.

Discovery of Gene Sources for Economic Traits in Hanwoo by Whole-genome Resequencing

  • Shin, Younhee;Jung, Ho-jin;Jung, Myunghee;Yoo, Seungil;Subramaniyam, Sathiyamoorthy;Markkandan, Kesavan;Kang, Jun-Mo;Rai, Rajani;Park, Junhyung;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1353-1362
    • /
    • 2016
  • Hanwoo, a Korean native cattle (Bos taurus coreana), has great economic value due to high meat quality. Also, the breed has genetic variations that are associated with production traits such as health, disease resistance, reproduction, growth as well as carcass quality. In this study, next generation sequencing technologies and the availability of an appropriate reference genome were applied to discover a large amount of single nucleotide polymorphisms (SNPs) in ten Hanwoo bulls. Analysis of whole-genome resequencing generated a total of 26.5 Gb data, of which 594,716,859 and 592,990,750 reads covered 98.73% and 93.79% of the bovine reference genomes of UMD 3.1 and Btau 4.6.1, respectively. In total, 2,473,884 and 2,402,997 putative SNPs were discovered, of which 1,095,922 (44.3%) and 982,674 (40.9%) novel SNPs were discovered against UMD3.1 and Btau 4.6.1, respectively. Among the SNPs, the 46,301 (UMD 3.1) and 28,613 SNPs (Btau 4.6.1) that were identified as Hanwoo-specific SNPs were included in the functional genes that may be involved in the mechanisms of milk production, tenderness, juiciness, marbling of Hanwoo beef and yellow hair. Most of the Hanwoo-specific SNPs were identified in the promoter region, suggesting that the SNPs influence differential expression of the regulated genes relative to the relevant traits. In particular, the non-synonymous (ns) SNPs found in CORIN, which is a negative regulator of Agouti, might be a causal variant to determine yellow hair of Hanwoo. Our results will provide abundant genetic sources of variation to characterize Hanwoo genetics and for subsequent breeding.

Secretion Characteristics of Foreign Glucoamylase from Recombinant Plasmid-Harboring and Chromosome-Integrated Saccharomyces cerevisiaes (재조합 플라스미드 포함 효모와 염색체 삽입 효모에서의 외래 Glucoamylase의 분비 특성)

  • 차형준;조광명유영제
    • KSBB Journal
    • /
    • v.9 no.5
    • /
    • pp.532-540
    • /
    • 1994
  • Secretion efficiency is generally affected by promoter, signal sequence, characteristics of foreign protein and host. Secretion efficiencies of glucoamylase in recombinant plasmid-harboring yeast and chromosome-integrated yeast which had STA signal sequences were 74% and 65% at the 4th day of incubation, respectively. The high secretion efficiencies of the yeasts were obtained due to the fact that the expression levels were not reached at the secretory apparatus capacities of the host yeasts. In both yeasts, most of the intracellular glucoamylase were detected in cytoplasm and small portion (below 10%) of glucoamylase were located in periplasm. The characteristics of secreted heterologous glucoamylase from recombinant Saccharomyces cerevisiaes were investigated by using Western blot analysis. The secreted mature glucoamylase was heterogeneous and its molecular weight was about 200 to 300 kilodalton. The carbohydrate content of mature glucoamylase was higher than 80%, and several bands of about 55 to 65 kilodalton indicate the endoplasmic reticulum forms of intracellular glucoamylase.

  • PDF

Efficient Expression, Purification, and Characterization of a Novel FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus in Pichia pastoris

  • Yang, Yufeng;Huang, Lei;Wang, Jufang;Wang, Xiaoning;Xu, Zhinan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1516-1524
    • /
    • 2014
  • Flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) can utilize a variety of external electron acceptors and also has stricter substrate specificity than any other glucose oxidoreductases, which makes it the ideal diagnostic enzyme in the field of glucose biosensors. A gene coding for a hypothetical protein, similar to glucose oxidase and derived from Aspergillus terreus NIH2624, was overexpressed in Pichia pastoris GS115 under the control of an AOX1 promoter with a level of 260,000 U/l in the culture supernatant after fed-batch cultivation for 84 h. After a three-step purification protocol that included isopropanol precipitation, affinity chromatography, and a second isopropanol precipitation, recombinant FAD-GDH was purified with a recovery of 65%. This is the first time that isopropanol precipitation has been used to concentrate a fermentation supernatant and exchange buffers after affinity chromatography purification. The purified FAD-GDH exhibited a broad and diffuse band between 83 and 150 kDa. The recombinant FAD-GDH was stable across a wide pH range (3.5 to 9.0) with maximum activity at pH 7.5 and $55^{\circ}C$. In addition, it displayed very high thermal stability, with a half-life of 82 min at $60^{\circ}C$. These characteristics indicate that FAD-GDH will be useful in the field of glucose biosensors.

Expression of Pea Superoxide Dismutase Gene in Transgenic Cucumber (Cucumis sativus L.) Plants (형질전환 오이(Cucumis sativus L.) 식물체에서 완두 Superoxide Dismutase 유전자의 발현)

  • 김재훈;오승용;이행순;조만현;이은모;우인식;곽상수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.3
    • /
    • pp.201-206
    • /
    • 1998
  • To develop the fruits of cucumber (Cucumis sativus L.) producing high yields of superoxide dismutase (SOD), the MnSOD cDNA from pea (Pisum sativum) under the control of the cauliflower mosaic virus 35S promoter was introduced into cucumber using Agrobacterium tumefaciens (strain LBA 4404)-mediated transformation. The kanamycin-resistant shoots were selected on the selection medium containing MS basal salt, 1.0 mg/L zeatin, 0.1 mg/L IAA, 300 mg/L claforan, and 100 mg/L kanamycin. After 6 weeks of culture on the selection medium, the shoots were transferred to MS medium containing 0.2 mg/L NAA to induce roots. PCR analysis using the primers for neomycin phosphotransferase (NPTII) gene revealed that three plantlets were transformed. The fruits of one transgenic plant had approximately 3.2-fold higher SOD activity than those of non-transgenic plants. MnSOD isoenzyme band was strongly detected on native gel in fruits of transgenic plants.

  • PDF