Browse > Article
http://dx.doi.org/10.4014/jmb.0902.065

Construction of a Recombinant Bacillus velezensis Strain as an Integrated Control Agent Against Plant Diseases and Insect Pests  

Roh, Jong-Yul (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Liu, Qin (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Choi, Jae-Young (Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Wang, Yong (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Shim, Hee-Jin (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Xu, Hong Guang (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1223-1229 More about this Journal
Abstract
To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.
Keywords
Bacillus velezensis; antifungal activity; Bacillus thuringiensis; cry1Ac; insecticidal activity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, G. J., J. C. Kim, K. S. Jang, and D. H. Lee. 2007. Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews. J. Microbiol. Biotechnol. 17:2071-2075   과학기술학회마을   ScienceOn
2 Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698   DOI   ScienceOn
3 Hou, X., S. M. Boyetchko, M. Brkic, D. Olson, A. Ross, and D. Hegedus. 2006. Characterization of the antifungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl. Microbiol. Biotechnol. 72: 644-653
4 Karim, S. and D. H. Dean. 2000. Toxicity and receptor binding properties of Bacillus thuringiensis delta-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Curr. Microbiol. 41: 276-283   DOI   ScienceOn
5 Ruiz-Garc$\acute{i}$a, C., Victoria B$\acute{e}$jar, Fernando Martinez-Checa, Inmaculada Llamas, and Emilia Quesada. 2005. Bacillus velezensis sp. nov., a surfactantproducing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195   DOI   ScienceOn
6 Sayyed, A. H., N. Crickmore, and D. J. Wright. 2001. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain. Appl. Environ. Microbiol. 67: 5859-5861   DOI   ScienceOn
7 Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806   ScienceOn
8 Wang, G., J. Zhang, F. Song, A. Gu, A. Uwais, T. Shao, and D. Huang. 2008. Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. J. Appl. Microbiol. 105: 1536-1543   DOI   ScienceOn
9 Wang, L. T., F. L. Lee, C. J. Tai, and H. P. Kuo. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675   DOI   ScienceOn
10 Bora, R. S., M. G. Murty, R. Shenbagarathai, and V. Sekar. 1994. Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl. Environ. Microbiol. 60: 214-222   PUBMED   ScienceOn
11 Zhu, B. 2006. Degradation of plasmid and plant DNA in water microcosms monitored by natural transformation and real-time polymerase chain reaction (PCR). Water Res. 40: 3231-3238
12 Kim, P. I. and K. C. Chung. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol. Lett. 234: 177-183   PUBMED   ScienceOn
13 Theoduloz, C., A. Vega, M. Salazar, E. Gonz$\acute{a}$lez, and L. Meza-Basso. 2003. Expression of a Bacillus thuringiensis deltaendotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J. Appl. Microbiol. 94: 375-381   DOI   ScienceOn
14 Driss, F., M. Kallassy-Awad, N. Zouari, and S. Jaoua. 2005. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J. Appl. Microbiol. 99: 945-953   DOI   ScienceOn
15 Zhou, Y., Y. L. Choi, M. Sun, and Z. Yu. 2008. Novel roles of Bacillus thuringiensis to control plant diseases. Appl. Microbiol. Biotechnol. 80: 563-572   DOI   ScienceOn
16 Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559
17 Bafana, A., T. Chakrabarti, and S. S. Devi. 2008. Azoreductase and dye detoxification activities of Bacillus velezensis strain AB. Appl. Microbiol. Biotechnol. 77: 1139-1144   DOI   ScienceOn
18 Kalman, S., K. L. Kiehne, J. L. Libs, and T. Yamamoto. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59:1131-1137   PUBMED   ScienceOn
19 Herrera, G., S. J. Snyman, and J. A. Thomson. 1994. Construction of a bioinsecticidal strain of Pseudomonas fluorescens active against the sugarcane borer, Eldana saccharina. Appl. Environ. Microbiol. 60: 682-690   PUBMED   ScienceOn
20 Alcantara, E. P., R. M. Aguda, A. Curtiss, D. H. Dean, and M. B. Cohen. 2004. Bacillus thuringiensis $delta$-endotoxin binding to brush border membrane vesicles of rice stem borers. Arch. Insect Biochem. Physiol. 55: 169-177   DOI   ScienceOn
21 Stein, T. 2005. Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857   DOI   PUBMED   ScienceOn
22 Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949   DOI   ScienceOn
23 Kang, J. N., J. Y. Roh, S. C. Shin, S. H. Ko, Y. J. Chung, Y.-S. Kim, et al. 2007. Dual insecticidal activity of Spodoptera-toxic Bacillus thuringiensis strain transformed with lepidopteran Cry toxin. J. Asia Pacific Entomol. 10: 137-143   DOI   ScienceOn
24 Patel, V. J., S. R. Tendulkar, and B. B. Chattoo. 2004. Bioprocess development for the production of an antifungal molecule by Bacillus licheniformis BC98. J. Biosci. Bioeng. 98:231-235   PUBMED
25 Moar, W. J., J. T. Trumble, R. H. Hice, and P. A. Backman. 1994. Insecticidal activity of the CryIIA protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leafcolonizing strain of Bacillus cereus. Appl. Environ. Microbiol. 60: 896-902   PUBMED   ScienceOn
26 Wang, J., J. Liu, H. Chen, and J. Yao. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76: 889-894   DOI   ScienceOn
27 Guerchicoff, A., C. P. Rubinstein, and R. A. Ugalde. 1996. Introduction and expression of an anti-dipteran toxin gene from B. thuringiensis in nodulating rhizobia. Cell. Mol. Biol. (Noisyle-grand) 42: 729-735
28 Lereclus, D., O. Arantes, J. Chaufaux, and M. Lecadet. 1989. Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 51: 211-217   DOI
29 Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17   DOI   ScienceOn
30 Yang, C. Y., Y. C. Ho, J. C. Pang, S. S. Huang, and J. S. Tschen. 2009. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour. Technol. 100: 1454-1458   DOI   ScienceOn
31 Lereclus, D., S. Guo, V. Sanchis, and M.-M. Lecadet. 1988. Characterization of two Bacillus thuringiensis plasmids whose replication is thermosensitive in B. subtilis. FEMS Microbiol. Lett. 49: 417-422   DOI   ScienceOn
32 Tendulkar, S. R., Y. K. Saikumari, V. Patel, S. Raghotama, T. K. Munshi, P. Balaram, and B. B. Chattoo. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103:2331-2339   DOI   ScienceOn
33 Ohse, M., K. Takahashi, Y. Kadowaki, and H. Kusaoke. 1995. Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. Biosci. Biotechnol. Biochem. 59: 1433-1437   DOI   ScienceOn
34 Cherif, A., S. Chehimi, F. Limem, B. M. Hansen, N. B. Hendriksen, D. Daffonchio, and A. Boudabous. 2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. J. Appl. Microbiol. 95: 990-1000   DOI   ScienceOn
35 Murphy, R. C. and S. E. Stevens Jr. 1992. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium Agmenellum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58:1650-1655   PUBMED   ScienceOn