• 제목/요약/키워드: high expression promoter

검색결과 281건 처리시간 0.024초

Isolation and Characterization of ACC Synthase Gene Family in Mung Bean (Vigna radiata L.): Differential Expression of the Three ACC Synthase enes in Response to Auxin and Brassinosteroid

  • Sunjoo Joo;Kim, Woo-Taek
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.61-71
    • /
    • 2000
  • By screening a cDNA library of auxin-treated mung bean (Vigna radiata L.) hypocotyls, we have isolated two full-length cDNA clones, pVR-ACS6 and pVR-ACS7, for 1-aminocyclopropane-1-carboxylate (ACC) synthase, the rate-limiting enzyme in the ethylene biosynthetic pathway. While PVR-ACS6 corresponds to the previously identified PCR fragment pMBA1, pVR-ACS7 is a new cDNA clone. A comparison of deduced amino acid sequences among auxin-induced ACC synthases reveal that these enzymes share a high degree of homology (65-75%) to VR-ACS6 and VR-ACS7 polypeptides, but only about 50% to VR-ACS1 polypeptide. ACS6 and ACS7 are specifically induced by auxin, while ACS1 is induced by cycloheximide, and to lesser extent by excision and auxin treatment. Results from nuclear run-on transcription assay and RNA gel blot studies revealed that all three genes were transcriptionally active displaying unique patterns of induction by IAA and various hormones in etiolated hypocotyls. Particularly, 24-epibrassinolide (BR), an active brassinosteroid, specifically enhanced the expression of VR-ACS7 by distinct temporal induction mechanism compared to that of IAA. In addition, BR synergistically increased the IAA-induced VR-ACS6 and VR-ACS7 transcript levels, while it effectively abolished both the IAA- and kinetin-induced accumulation of VR-ACS1 mRNA. In light-grown plants, VR-ACS1 was induced by IAA in roots, whereas W-ACS6 in epicotyls. IAA- and BR-treatments were not able to increase the VR-ACS7 transcript in the light-grown tissues. These results indicate that the expression of ACC synthase multigene family is regulated by complex hormonal and developmental networks in a gene- and tissue-specific manner in mung bean plants. The VR-ACS7 gene was isolated, and chimeric fusion between the 2.4 kb 5'-upstream region and the $\beta$-glucuronidase (GUS) reporter gene was constructed and introduced into Nicotiana tobacum. Analysis of transgenic tobacco plants revealed the VR-ACS7 promoter-driven GUS activity at a highly localized region of the hypocotyl-root junction of control seedlings, while a marked induction of GUS activity was detected only in the hypocotyl region of the IAA-treated transgenic seedlings where rapid cell elongation occurs. Although there was a modest synergistic effect of BR on the IAA-induced GUS activity, BR alone failed to increase the GUS activity, suggesting that induction of VR-ACS7 occurs via separate signaling pathways in response to IAA and BR.

  • PDF

수용성 streptavidin의 Escherichia coli 에서 기능적 발현 (Functional Expression of Soluble Streptavidin in Escherichia coli)

  • 한승희;김형민;임명운;김진규
    • 생명과학회지
    • /
    • 제25권6호
    • /
    • pp.631-637
    • /
    • 2015
  • Streptmyces avidinii에서 발현되는 Streptavidin은 vitamin H인 d-biotin 4분자에 결합하며 해리상수(Kd)가 10−15 M를 나타내는 아주 강한 비공유결합이다. 이러한 streptavidin과 biotin 상호간의 강한 결합력은 수많은 생물체 분자들의 탐지 및 특징을 연구하는데 응용되어져 왔으므로 Escherichia coli에서 수용성 streptavidin의 기능적 발현에 대한 연구는 매우 유용하다. 즉 Escherichia coli에서 streptavidin을 발현시키기 위해 streptavidin유전자를 T7 RNA polymerase/T7 promoter를 이용하는 pET-22b 플라스미드로 클로닝하였다. 또한 N-말단에 pelB leader를 포함하여 발현된 streptavidin의 periplasmic space로 운반하여 수용성 단백질형태의 분비를 촉진하였으며 C-말단에는 6개의 polyhistidine tags를 두어 정제하는데 사용되었다. 정제된 streptavidin단백질은 10-20 mg/ml 의 높은 회수율을 나타내었으며 SDS-PAGE에서 가열하는 경우 변성되어 17 kD인 monomer형태를, 가열하지 않는 경우에는 68 kDa으로 원래의 tetramer형태를 나타내었다. 따라서 streptavidin의 tetramer 구조는 비공유결합에 의해 이루어짐을 알 수 있었다. Size-exclusion chromatography에 의한 streptavidin의 구조 역시 tetramer를 재확인할 수 있었다. 정제된 수용성 streptavidin은 Westernblot실험에서 biotinylation된 단백질을 탐지하였으며 이 결과는 정제된 streptavidin이 biotin에 결합하는 기능이 존재함을 나타내었다. 이상의 모든 결과를 종합해보면 본 연구에서 구축된 발현시스템을 통하여 발현된 streptavidin은 높은 회수율을 나타내어 대량생산이 가능하였으며 자연상태의 streptavidin과 동일한 homotetramer를 형성하고 biotin에 결합할 수 있는 기능을 나타내었다.

Molecular Cloning and Characterization of the Yew Gene Encoding Squalene Synthase from Taxus cuspidata

  • Huang, Zhuoshi;Jiang, Keji;Pi, Yan;Hou, Rong;Liao, Zhihua;Cao, Ying;Han, Xu;Wang, Qian;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.625-635
    • /
    • 2007
  • The enzyme squalene synthase (EC 2.5.1.21) catalyzes a reductive dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for the sterol and triterpene biosynthesis. A full-length cDNA encoding squalene synthase (designated as TcSqS) was isolated from Taxus cuspidata, a kind of important medicinal plants producing potent anti-cancer drug, taxol. The full-length cDNA of TcSqS was 1765 bp and contained a 1230 bp open reading frame (ORF) encoding a polypeptide of 409 amino acids. Bioinformatic analysis revealed that the deduced TcSqS protein had high similarity with other plant squalene synthases and a predicted crystal structure similar to other class I isoprenoid biosynthetic enzymes. Southern blot analysis revealed that there was one copy of TcSqS gene in the genome of T. cuspidata. Semi-quantitative RT-PCR analysis and northern blotting analysis showed that TcSqS expressed constitutively in all tested tissues, with the highest expression in roots. The promoter region of TcSqS was also isolated by genomic walking and analysis showed that several cis-acting elements were present in the promoter region. The results of treatment experiments by different signaling components including methyl-jasmonate, salicylic acid and gibberellin revealed that the TcSqS expression level of treated cells had a prominent diversity to that of control, which was consistent with the prediction results of TcSqS promoter region in the PlantCARE database.

High-yield Production of Functional Human Lactoferrin in Transgenic Cell Cultures of Siberian Ginseng(Acanthopanax senticosus)

  • Jo, Seung-Hyun;Kwon, Suk-Yoon;Park, Doo-Sang;Yang, Kyoung-Sil;Kim, Jae-Whune;Lee, Ki-Teak;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권5호
    • /
    • pp.442-448
    • /
    • 2006
  • Human lactoferrin (hLf) is an iron-binding glycoprotein that has been considered to play many biological roles in the human, including the stimulation of the immune system, antimicrobial and anti-inflammatory effects, and regulation of iron absorption. We generated transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing a functional hLf protein using the signal peptide sequence from the endoplasmic reticulum and driven by an oxidative stress-inducible SWPA2 promoter which is highly expressed in plant cell cultures. The production of hLf increased proportionally to cell growth and showed a maximal level (up to 3.6% of total soluble protein) at the stationary phase in suspension cultures. Full-length hLf protein was identified by immunoblot analysis in transgenic cell cultures of Siberian ginseng. Recombinant hLf (rhLf) was purified from suspension cells of Siberian ginseng by ammonium sulfate precipitation, cation-exchange and gel filtration chromatography. N-terminal sequences of rhLf were identical to native hLf (nhLf). The overall monosaccharide composition of rhLf showed the presence of plant specific xylose while sialic acid is absent. Antibacterial activity of purified rhLf was higher than that of nhLf. Taken together, we anticipate that medicinal Siberian ginseng cultured cells, as demonstrated by this study, will be a biotechnologically useful source for commercial production of functional hLf not requiring further purification.

Cloning, Expression, and Characterization of DNA Polymerase from Hyperthermophilic Bacterium Aquifex pyrophilus

  • Choi, Jeong-Jin;Kwon, Suk-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.1022-1030
    • /
    • 2004
  • The gene encoding Aquifex pyrophilus (Apy) DNA polymerase was cloned and sequenced. The Apy DNA polymerase gene consists of 1,725 bp coding for a protein with 574 amino acid residues. The deduced amino acid sequence of Apy DNA. polymerase showed a high sequence homology to Escherichia coli DNA polymerase I-like DNA polymerases. It was deduced by amino acid sequence alignment that Apy DNA polymerase, like the Klenow fragment, has only the two domains, the $3'{\rightarrow}5'$ exonuclease domain and the $5'{\rightarrow}3'$ polymerase domain, containing the characteristic motifs. The Apy DNA polymerase gene was expressed under the control of T7lac promoter on the expression vector pET-22b(+) in E. coli. The expressed enzyme was purified by heat treatment, and Cibacron blue 3GA and $UNO^{TM}$ Q column chromatographies. The optimum pH of the purified enzyme was 7.5, and the optimal concentrations of KCl and $Mg^{2+}$ were 20 mM and 3 mM, respectively. Apy DNA polymerase contained a double strand-dependent $3'{\rightarrow}5'$ proofreading exonuclease activity, but lacked any detectable $5'{\rightarrow}3'$ exonuclease activity, which is consistent with its amino acid sequence. The somewhat lower thermostability of Apy DNA polymerase than the growth temperature of A. pyrophilus was analyzed by the comparison of amino acid composition and pressure effect.

Functional Expression of SAV3818, a Putative TetR-Family Transcriptional Regulatory Gene from Streptomyces avermitilis, Stimulates Antibiotic Production in Streptomyces Species

  • Duong, Cae Thi Phung;Lee, Han-Na;Choi, Si-Sun;Lee, Sang-Yup;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.136-139
    • /
    • 2009
  • Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least two-fold higher in S. avermitilis ATCC31780. To verify the biological significance of some of the transcriptomics-guided targets, five putative regulatory genes were individually cloned under the strong-and-constitutive promoter of the Streptomyces expression vector pSE34, followed by the transformation into the low-producer S. avermitilis ATCC31267. Among the putative genes tested, three regulatory genes including SAV213, SAV3818, and SAV4023 exhibited stimulatory effects on avermectin production in S. avermitilis ATCC31267. Moreover, overexpression of SAV3818 also stimulated actinorhodin production in both S. coelicolor M145 and S. lividans TK21, implying that the SAV3818, a putative TetR-family transcriptional regulator, could be a global upregulator acting in antibiotic production in Streptomyces species.

독성물질 검출을 위한 Plasmid Vector 개발

  • 최연주;유진삼;하진목;백형석
    • 한국미생물·생명공학회지
    • /
    • 제25권2호
    • /
    • pp.144-150
    • /
    • 1997
  • After DNA damage, umuDC is the only SOS operon that must be induced to promote SOS mutagenesis in Escherichia coli. The recombinant plasmid pBC401 and pBC402 were constructed to fuse the lac structural genes with promoter region of umuDC operon to induce the expression of lacZ gene by DNA damage. We transformed the plasmid pBC401 and pBC402 into E. coli MC1061, lacZ deleted strain and determined the activity of $\beta$-galactosidase for various mutagen; UV, mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroqunoline-1-oxide (NQO), ethyl methanesulfonate (EMS). The $\beta$-galactosidase activities of PBC401 and pBC402 for UV, MMC, and NQO were increased in proportion to expression time until 3 hours thereafter, the activities were constant or slightly decreased. The activities for MNNG and EMS were not so high as for UV, MMC, and NQO. When MNNG and EMS were treated, $\beta$-galactosidase activity of pBC402 was slightly lower than pBC401 but when UV, MMC, and NQO were treated in pBC402, $\beta$-galactosidase activity was slightly higher than in pBC401. Therefore, the pBC402 was better than the pBC401 in terms of sensitivity for frameshift mutagen. We suggest that the plasmid pBC401 and pBC402 are easy to detect mutagens which cause frameshift mutation rather than point mutation.

  • PDF

Xanthomonas oryzae pv. oryzae triggers complex transcriptomic defense network in rice

  • Nino, Marjohn;Nogoy, Franz M.;Song, Jae-Young;Kang, Kwon-Kyoo;Cho, Yong-Gu
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.164-164
    • /
    • 2017
  • High throughput transcriptome investigations of immunity in plants highlight the complexity of gene networks leading to incompatible interaction. To identify genes crucial to resistance against Xanthomonas oryzae pv oryzae, functional genetic analysis of selected differentially expressed genes from our microarray data set was carried out. A total of 13 overexpression vector constructs were made using 35S CaMV promoter which drive constitutive expression in rice. Most of the genes are developmentally expressed especially during maximum tillering stage and are commonly highly expressed in the leaves. When screened against Xoo strain K2, the transgenic plants displayed shorter lesion length compared with wild type Dongjin which indicates partial resistance. The levels of ROS continuously magnified after inoculation which indicates robust cellular sensing necessary to initiate cell death. Elevated transcripts levels of several defense-related genes at the downstream of defense signal network also corroborate the phenotype reaction of the transgenic plants. Moreover, expression assays revealed regulation of these genes by cross-communicating signal-transductions pathways mediated by salicylic and jasmonic acid. These collective findings revealed the key immune signaling conduits critical to mount full defense against Xoo.

  • PDF

Functional Characterization of PR-1 Protein, β-1,3-Glucanase and Chitinase Genes During Defense Response to Biotic and Abiotic Stresses in Capsicum annuum

  • Hong, Jeum-Kyu;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.195-206
    • /
    • 2005
  • Spatial and temporal expression of pathogenesis-related (PR) gene and proteins has been recognized as inducible defense response in pepper plants. Gene expression and/or protein accumulation of PR-1, $\beta-1,3-glucanase$ and chitinase was predominantly found in pepper plants during the inoculations by Xanthomonas campestris pv. vesicatoria, Phytophthora capsici and Colletotrichum coccodes. PR-1 and chitinase genes were also induced in pepper plants in response to environmental stresses, such as high salinity and drought. PR-1 and chitinase gene expressions by biotic and abiotic stresses were regulated by their own promoter regions containing several stress-related cis-acting elements. Overexpression of pepper PR-1 or chitinase genes in heterogeneous transgenic plants showed enhanced disease resistance as well as environmental stress tolerances. In this review, we focused on the putative function of pepper PR-1, $\beta-1,3-glucanase$ and chitinase proteins and/or genes at the biochemical, molecular and cytological aspects.

Characterization of the TAK1 gene in Apis cerana cerana(AccTAK1) and its involvement in the regulation of tissue-specific development

  • Meng, Fei;Kang, Mingjiang;Liu, Li;Luo, Lu;Xu, Baohua;Guo, Xingqi
    • BMB Reports
    • /
    • 제44권3호
    • /
    • pp.187-192
    • /
    • 2011
  • TGF-$\beta$ activated kinase-1 (TAK1) plays a pivotal role in developmental processes in many species. Previous research has mainly focused on the function of TAK1 in model organisms, and little is known about the function of TAK1 in hymenoptera insects. Here, we isolated and characterized the TAK1 gene from Apis cerana cerana. Promoter analysis of AccTAK1 revealed the presence of transcription factor binding sites related to early development. Real-time quantitative PCR and immunohistochemistry experiments revealed that AccTAK1 was expressed at high levels in fourth instar larvae, primarily in the abdomen, in the intestinal wall cells of the midgut and in the secretory cells of the salivary glands. In addition, AccTAK1 expression in fourth instar larvae could be dramatically induced by treatment with pesticides and organic solvents. These observations suggest that AccTAK1 may be involved in the regulation of early development in the larval salivary gland and midgut.