• Title/Summary/Keyword: high explosives

Search Result 184, Processing Time 0.025 seconds

Time dependent heat transfer of proliferation resistant plutonium

  • Lloyd, Cody;Hadimani, Ravi;Goddard, Braden
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.510-517
    • /
    • 2019
  • Increasing proliferation resistance of plutonium by way of increased $^{238}Pu$ content is of interest to the nuclear nonproliferation and international safeguards community. Considering the high alpha decay heat of $^{238}Pu$, increasing the isotopic fraction leads to a noticeably higher amount of heat generation within the plutonium. High heat generation is especially unattractive in the scenario of weaponization. Upon weaponization of the plutonium, the plutonium may generate enough heat to elevate the temperature in the high explosives to above its self-explosion temperature, rendering the weapon useless. In addition, elevated temperatures will cause thermal expansion in the components of a nuclear explosive device that may produce thermal stresses high enough to produce failure in the materials, reducing the effectiveness of the weapon. Understanding the technical limit of $^{238}Pu$ required to reduce the possibility of weaponization is key to reducing the current limit on safeguarded plutonium (greater than 80 at. % $^{238}Pu$). The plutonium vector evaluated in this study was found by simulating public information on Lightbridge's fuel design for pressurized water reactors. This study explores the temperature profile and maximum stress within a simple (first generation design) hypothetical nuclear explosive device of four unique scenarios over time. Analyzing the transient development of both the temperature profile and maximum stress not only establishes a technical limit on the $^{238}Pu$ content, but also establishes a time limit for which each scenario would be useable.

A Study on Movement of the Free Face During Bench Blasting (전방 자유면의 암반 이동에 관한 연구)

  • Lee, Ki-Keun;Kim, Gab-Soo;Yang, Kuk-Jung;Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.29-42
    • /
    • 2012
  • Variables influencing the free face movement due to rock blasting include the physical and mechanical properties, in particular the discontinuity characteristics, explosive type, charge weight, burden, blast-hole spacing, delay time between blast-holes or rows, stemming conditions. These variables also affects the blast vibration, air blast and size of fragmentation. For the design of surface blasting, the priority is given to the safety of nearby buildings. Therefore, blast vibration has to be controlled by analyzing the free face movement at the surface blasting sites and also blasting operation needs to be optimized to improve the fragmentation size. High-speed digital image analysis enables the analyses of the initial movement of free face of rock, stemming optimality, fragment trajectory, face movement direction and velocity as well as the optimal detonator initiation system. Even though The high-speed image analysis technique has been widely used in foreign countries, its applications can hardly be found in Korea. This thesis aims at carrying out a fundamental study for optimizing the blast design and evaluation using the high-speed digital image analysis. A series of experimentation were performed at two large surface blasting sites with the rock type of shale and granite, respectively. Emulsion and ANFO were the explosives used for the study. Based on the digital images analysis, displacement and velocity of the free face were scrutinized along with the analysis fragment size distribution. In addition, AUTODYN, 2-D FEM model, was applied to simulate detonation pressure, detonation velocity, response time for the initiation of the free face movement and face movement shape. The result show that regardless of the rock type, due to the displacement and the movement velocity have the maximum near the center of charged section the free face becomes curved like a bow. Compared with ANFO, the cases with Emulsion result in larger detonation pressure and velocity and faster reaction for the displacement initiation.

Numerical investigation on the performance of the aluminized HMX with varying aluminum concentration (알루미늄 함유량 변화에 따른 알루미늄 입자가 함유된 HMX 성능에 관한 수치 연구)

  • Kim, Wuhyun;Gwak, Min-cheol;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.617-621
    • /
    • 2017
  • The performance characteristics of aluminized high explosive are considered by varying the aluminum(Al) concentration in a two-phase model. Since the time scales of the characteristic combustion process of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al concentration and a double front detonation (DFD) feature when anaerobic Al reaction occurs behind the front. In the current study, a series of confined rate sticks are considered for characterizing the performance of aluminized HMX with a maximum Al concentration of 50%. The simulated results are compared with the experimental data for 5%-25% concentrations.

  • PDF

Status of Researches of Excavation Damaged Zone in Foreign Underground Research Laboratories Constructed for Developing High-level Radioactive Waste Disposal Techniques (고준위방사성폐기물 처분 기술개발을 위해 건설된 해외 지하연구시설에서의 암반손상대 연구 현황)

  • Park, Seunghun;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.35 no.3
    • /
    • pp.31-54
    • /
    • 2017
  • In the countries operating nuclear reactors, the development of high-level radioactive waste(HLW) disposal technique is considered as an urgent and important issue for sustainable utilization of nuclear energy. In Korea, in which a low and intermediate radioactive waste repository is already operating, the construction of an underground research laboratory for in situ validation studies became a matter of interest with increasing concerns on the management of HLW. In order to construct and to operate an underground HLW repository safely in deep underground, the stability of rock mass should be guaranteed. As an important factor on rock stability, excavation damaged zone (EDZ) has been studied in many underground research laboratories in foreign countries. For accurate evaluation of the characteristics and effects of EDZ under disposal condition, it is required to use reliable investigation method based on the analysis of previous studies in similar conditions. In this study, status of foreign underground research laboratories in other countries, approaches for investigation the characteristics, size, and effect of EDZ, and major findings from the researches were surveyed and reported. This will help the accomplishment of domestic researches for developing HLW management techniques in underground research laboratory.

A Study on Dispersed Media Formation of Hydrocarbon Fuel by an Explosive Burster (화약 폭발에 의한 탄화수소계 연료의 분산매질 형성에 관한 연구)

  • Yoo, Jae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.33-40
    • /
    • 2016
  • Liquid fuel can be easily exploded and release more energy of detonation than conventional explosives because it has different explosion mechanism. In order to analyze dispersion characteristics of liquid fuel for the safety purpose, two tests are conducted. First, pre-test, which is a computer simulation, is carried out by a software called ANSYS AUTODYN to eliminate the effect of a canister that usually causes irregular dispersion of the fuel. Second, field test is performed to find out the amount and density effect of bursting charge. High speed cameras are installed in front of the canister to visualize the mechanism. Velocity, area and radius of the dispersed cloud are measured by image processing software, these are shown that the amount of bursting charge affects cloud velocity and area but density is not a significant factor of cloud formation.

Isolation of a Pseudomonas aeruginosa Strain Capable of Degrading Acrylamide

  • Arvind, Kumar;Kumar, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.347-352
    • /
    • 1998
  • A new strain of Pseudomonas aeruginosa growing in a rice field contaminated with herbicide and effluents of a factory manufacturing explosives was isolated. This isolate showed excellent growth in unusually high concentration of acrylamide (60 mM). It utilized acrylamide as the sole source of carbon and nitrogen for growth. Other amides such as acetamide, butyramide, isobutyramide, and methacrylamide were also utilized for the growth by this isolate. Acrylamide was degraded into acrylic acid and ammonia by the enzyme amidase. More than $65\%$ of added acrylamide (40 mM) was converted into acrylic acid after 40 h of growth of the culture. Amidase activity was inducible, the highest activity being observed with isobutyramide ($12.5{\mu}M$ ammonia/mg protein/min). These results demonstrate that this bacterium can degrade a variety of amides.

  • PDF

A Predictive Study on Molecular and Explosive Properties of 1-Aminoimidazole Derivatives

  • Cho, Soo-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2319-2324
    • /
    • 2011
  • Molecular structures and chemical properties of 1-aminoimidazole derivatives have been investigated at high levels of density functional theories. Heat of formation, density, explosive performances and impact sensitivities have been estimated at the global minimum of potential energy surface. As more nitro groups are introduced, the explosive performances of 1-aminoimidazole derivatives are enhanced, while the impact sensitivity becomes more sensitive. A two-dimensional plot between explosive performance and impact sensitivity has been utilized to comprehend the technical status of new explosive candidates. Based on locations in the two-dimensional plot, 1-aminodinitroimidzole isomers appears to have a potential to be good candidates for insensitive explosives, and 1-aminotrinitroimidazole may become a powerful explosive molecule whose behavior is quite close to HMX.

Silica Sulfuric Acid/HNO3 as a Novel Heterogeneous System for the Nitrolysis of DADN to HMX under Mild Conditions

  • Bayat, Yadollah;Mostafavi, Mohammad Mahdi Ahari
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3551-3553
    • /
    • 2012
  • 1,5-Diacetyl-3,7-dinitro-l,3,5,7-tetraazacyclooctane (DADN) is a key intermediate in the preparation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), one of the most powerful high-melting explosives. The present investigation focuses on nitrolysis of DADN to HMX by developing a new nitrolysis process involving the use of nitric acid catalyzed by Silica Sulfuric Acid (SSA). In order to optimize the process parameters for synthesis of HMX to obtain higher yield and purity, a study was carried out with variation of some parametric conditions like time, mole ratio of SSA and nitric. This method gave us green and mild conditions for nitration reaction.

An Analytic Hierarchy Process on the Cause of Gun Powder Blasting Accicdent (화약류 발파사고원인의 AHP기법에 의한 분석)

  • 서승록;이정훈
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.120-125
    • /
    • 2003
  • This research analyzes blasting accident cause that is happening construction and engineering works spot taking advantage of AHP (Analytic Hierarchy Process) techniques as metrical. Result that apply AHP with blasting accident that is happened the South Korea and Japan, appeared by thing which relative importance by human cause is highest. Specially, it is observance of safety rule that dominate the highest ratio among of human cause, and if observe a little, causes that prevention is possible are much. By result of this research, necessity of safety education is important first of all for prevention of blasting accident. Also, thorough safety control plan of during work and enough on-the-slut probe before work should be established. Because explosives uses gunpowder and explosive high energy, work by qualified person is essential. Ant it may become help to minimize dissipation of important life and property preventing beforehand explosion accident of gunpowder.

Review : Structures, Synthesis and Applications of MOF (리뷰: MOF의 구조, 합성 및 응용)

  • Lee, Junwung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.510-520
    • /
    • 2014
  • Metal-Organic Frameworks(MOFs) are attracting attentions from various fields including chemistry, materials science, physics and medical science because of its exceptionally large pore volumes and surface areas which far exceed those of zeolites. The possibilities of applications of MOFs for gas separation, catalysts, drug delivery, and high explosives detections have already been verified. In these review the author describes the structures, synthetic methods and applications of MOFs based on the literatures published during last 15 years to give the readers general pictures of MOF itself as well as the global research trends of these materials.