DOI QR코드

DOI QR Code

Review : Structures, Synthesis and Applications of MOF

리뷰: MOF의 구조, 합성 및 응용

  • Lee, Junwung (Technology Information Analysis Center, Korea Institute of Science and Technology Information)
  • 이준웅 (한국과학기술정보연구원 기술정보분석센터 ReSEAT 사업팀)
  • Received : 2013.11.07
  • Accepted : 2014.06.13
  • Published : 2014.08.05

Abstract

Metal-Organic Frameworks(MOFs) are attracting attentions from various fields including chemistry, materials science, physics and medical science because of its exceptionally large pore volumes and surface areas which far exceed those of zeolites. The possibilities of applications of MOFs for gas separation, catalysts, drug delivery, and high explosives detections have already been verified. In these review the author describes the structures, synthetic methods and applications of MOFs based on the literatures published during last 15 years to give the readers general pictures of MOF itself as well as the global research trends of these materials.

Keywords

References

  1. Hoskins, B. F. et al., J. Am. Chem. Soc., 111, 5962, 1989. https://doi.org/10.1021/ja00197a079
  2. Yaghi, O. M. et al., J. Am. Chem. Soc., 117, 10401, 1995. https://doi.org/10.1021/ja00146a033
  3. Yaghi, O. M. et al., Nature, 378, 703, 1995. https://doi.org/10.1038/378703a0
  4. LEE, Junwung, JKIMST, 14, 246, 2011.
  5. LEE, Junwung, JKIMST, 15, 475, 2012.
  6. LEE, Junwung, JKIMST, 16, 583, 2013.
  7. LEE, Junwung, 'Synthesis and Applications of MOF,' Tech. Rev. Report, KISTI, 2013.
  8. Hailian Li, et al., Nature, 402, 276, 1999. https://doi.org/10.1038/46248
  9. Eddaoudi, M. et al., Science, 295, 469, 2002. https://doi.org/10.1126/science.1067208
  10. Nathaniel L. Rosi, et al., Science, 300, 1127, 2003. https://doi.org/10.1126/science.1083440
  11. Metal-organic framework structure, http://en.wikipedia. org/wiki/Metal-organic_framework
  12. Tranchemontagne, D. J. et al., Chem. Soc. Rev., 38, 1257, 2009. https://doi.org/10.1039/b817735j
  13. Secondary Building Units, http://www.wag.caltech. edu/home/jmendoza/SBU_Jose LMendozaCortes.pdf
  14. MOFomics: Metal-Organic Frameworks Characterization, Princeton University, http://helios.princeton.edu/mofomics/
  15. Hoi Ri Moon, 'Synthesis and Charateristics of MOF,' Korea Zeolite Society Meeting, 2012, http:// www.kza.or.kr/eNews/2012/Sept/Topic5.PDF
  16. Hoskins, B. F. et al., J. Am. Chem. Soc., 112, 1546, 1990. https://doi.org/10.1021/ja00160a038
  17. Chui, S. et al., Science, 283, 1148, 1999. https://doi.org/10.1126/science.283.5405.1148
  18. Stock, N. et al. Chem. Rev., 112, 933, 2012. https://doi.org/10.1021/cr200304e
  19. Moliner, M. et al., Microp. Mesop. Mater., 78, 73, 2005. https://doi.org/10.1016/j.micromeso.2004.09.018
  20. Sumida, K. et al., Chem. Sci., 1, 184, 2010. https://doi.org/10.1039/c0sc00179a
  21. Banerjee, R. et al., Science, 319, 939, 2008. https://doi.org/10.1126/science.1152516
  22. Bauer, S. et al., Inorg. Chem., 47, 7568, 2008. https://doi.org/10.1021/ic800538r
  23. Jhung, S et al., Bull. Korean Chem. Soc., 26, 880, 2005. https://doi.org/10.5012/bkcs.2005.26.6.880
  24. Taylor-Pashow, K. M. L. et al., J. Am. Chem. Soc., 131, 14261, 2009. https://doi.org/10.1021/ja906198y
  25. Jhung, S. H. et al., Adv. Mater., 19, 121, 2007. https://doi.org/10.1002/adma.200601604
  26. Khan, N. A. et al., Chem. Eng. J., 166, 1152, 2011. https://doi.org/10.1016/j.cej.2010.11.098
  27. Khan, N. A. et al., Phys. Chem. Chem. Phys., 12, 2625, 2010. https://doi.org/10.1039/b921558a
  28. Mueller, U. et al., WO 2005/049892.
  29. Schlesinger, M. et al., Microp. Mesop. Mater., 132, 121, 2010. https://doi.org/10.1016/j.micromeso.2010.02.008
  30. Pichon, A. et al., CrystEngComm., 8, 211, 2006. https://doi.org/10.1039/b513750k
  31. Friscic, T., et al., J. Mater. Chem., 20, 7599, 2010. https://doi.org/10.1039/c0jm00872a
  32. Friscic, T., et al., CrystEngComm., 11, 743, 2009. https://doi.org/10.1039/b822934c
  33. Friscic, T., et al., Angew. Chem., Int. Ed., 49, 712, 2010. https://doi.org/10.1002/anie.200906583
  34. Bang, J. H. et al., Adv. Mater., 22, 1039, 2010. https://doi.org/10.1002/adma.200904093
  35. Son, W. J. et al., Chem. Commun., 6336, 2008.
  36. Li, Z. Q. et al., Mater. Lett., 63, 78, 2009. https://doi.org/10.1016/j.matlet.2008.09.010
  37. Khan, N. A. et al., Bull. Korean Chem. Soc., 30, 2921, 2009. https://doi.org/10.5012/bkcs.2009.30.12.2921
  38. Khan, N. A. et al., J. Inorg. Chem., 4975, 2010.
  39. Kim, J. et al., J. Mater. Chem., 21, 3070, 2011. https://doi.org/10.1039/c0jm03318a
  40. Zhang, X.-M., Coord. Chem. Rev., 249, 1201, 2005. https://doi.org/10.1016/j.ccr.2005.01.004
  41. Volkringer, C. et al., Microp. Mesop. Mater., 105, 111, 2007. https://doi.org/10.1016/j.micromeso.2007.05.018
  42. Volkringer, C. et al., Mater. Res. Bull., 41, 948, 2006. https://doi.org/10.1016/j.materresbull.2006.01.022
  43. Volkringer, C. et al., Chem. Mater., 21, 5695, 2009. https://doi.org/10.1021/cm901983a
  44. Dong, B. X. et al., Dalton Trans., 39, 5683, 2010. https://doi.org/10.1039/b917515f
  45. Ma, D. et al., CrystEngComm., 12, 4372, 2010. https://doi.org/10.1039/c0ce00135j
  46. Biemmi, E. et al., Microp. Mesop. Mater., 117, 111, 2009. https://doi.org/10.1016/j.micromeso.2008.06.040
  47. Choi, J. S. et al., Microp. Mesop. Mater., 116, 727, 2008. https://doi.org/10.1016/j.micromeso.2008.04.033
  48. Seo, Y. K. et al., Microp. Mesop. Mater., 119, 331, 2009. https://doi.org/10.1016/j.micromeso.2008.10.035
  49. Haque, E. et al., Chem.-Eur. J. 16, 1046, 2010. https://doi.org/10.1002/chem.200902382
  50. Chalati, T. et al., Mater. Chem., 21, 2220, 2011. https://doi.org/10.1039/c0jm03563g
  51. Ma, M. et al., Cryst. Growth Des., 11, 185, 2011. https://doi.org/10.1021/cg101130m
  52. Schubert, M., Patent WO2007/023134 A1.
  53. Chang, J. S., Patent WO2008/066293 A1.
  54. Paik, M. H., Chem. Rev., 112, 782, 2012. https://doi.org/10.1021/cr200274s
  55. Kaye, S. S. et al, J. Am. Chem. Soc., 130, 806, 2008. https://doi.org/10.1021/ja7102108
  56. Nouar, F. et al., J. Am. Chem. Soc., 131, 2864, 2009. https://doi.org/10.1021/ja807229a
  57. Mendoza-Cortes, J. L. et al., J. Phys. Chem. A, 116, 1621, 2012. https://doi.org/10.1021/jp206981d
  58. 'MOFs for hydrogen storage', http://en.wikipedia.org/ wiki/Metal-OrganicFramework#MOFs_for_hydrogen_ storage
  59. Srinivas, S. T. et al., J. Catal., 148, 470, 1994. https://doi.org/10.1006/jcat.1994.1233
  60. Li, Y. et al., J. Am. Chem. Soc. 128, 726, 2006. https://doi.org/10.1021/ja056831s
  61. Li, Y. et al., J. Am. Chem. Soc., 128, 8136, 2006. https://doi.org/10.1021/ja061681m
  62. Takamizawa, S. et al., J. Am. Chem. Soc., 132, 2862, 2010. https://doi.org/10.1021/ja910492d
  63. Takamizawa, S. et al., Inorg. Chem. Commun., 6, 763, 2003. https://doi.org/10.1016/S1387-7003(03)00078-9
  64. Takamizawa, S. et al., CrystEngComm., 12, 82, 2010. https://doi.org/10.1039/b917263g
  65. Takamizawa, S. et al., Chem. Commun., 6625, 2009.
  66. Chang, N. et al., J. Am. Chem. Soc., 132, 13645, 2010. https://doi.org/10.1021/ja1058229
  67. Maes, M. et al., J. Am. Chem. Soc., 1321, 15277, 2010.
  68. Henke, S. et al., J. Am. Chem. Soc., 133, 2064, 2011. https://doi.org/10.1021/ja109317e
  69. Dinca, M. et al., J. Am. Chem. Soc., 128, 16876, 2006. https://doi.org/10.1021/ja0656853
  70. Horike, S. et al., J. Am. Chem. Soc., 130, 5854, 2008. https://doi.org/10.1021/ja800669j
  71. Park, Y. K. et al., Angew. Chem., Int. Ed., 46, 8230, 2007. https://doi.org/10.1002/anie.200702324
  72. Park, Y. K. et al., Chem. Commun., 46, 3086, 2010. https://doi.org/10.1039/c000775g
  73. Peer, D. et al., Nat. Nanotechnol., 2, 751, 2007. https://doi.org/10.1038/nnano.2007.387
  74. Horcajada, P. et al., Nat. Mater., 9, 172, 2010. https://doi.org/10.1038/nmat2608
  75. Rieter, W. J., J. Am. Chem. Soc., 130, 11584, 2008. https://doi.org/10.1021/ja803383k
  76. Horcajada, P. et al., Chem. Rev., 112, 1232, 2012. https://doi.org/10.1021/cr200256v
  77. Lan, A. et al., Angew. Chem. Int. Ed., 48, 2334, 2009. https://doi.org/10.1002/anie.200804853
  78. Thomas, S. W. et al., Chem. Rev., 107, 1339, 2007. https://doi.org/10.1021/cr0501339
  79. Toal, S. J. et al., J. Mater. Chem., 16, 2871, 2006. https://doi.org/10.1039/b517953j
  80. Thomas, S. W. et al., Chem. Commun., 4572, 2005.
  81. Bauer, C. A. et al., J. Am. Chem. Soc., 129, 7136, 2007. https://doi.org/10.1021/ja0700395
  82. Chen, B. et al., Adv. Mater., 19, 1693, 2007. https://doi.org/10.1002/adma.200601838
  83. Lan, A. et al., Angew. Chem. Int. Ed., 48, 2334, 2009. https://doi.org/10.1002/anie.200804853
  84. Kim, T. K. et al., Inorg. Chem., 52, 589, 2013. https://doi.org/10.1021/ic3011458