• 제목/요약/키워드: high energy X-rays

검색결과 91건 처리시간 0.025초

산삼배양근의 원적외선 건조특성 (Far Infrared Rays Drying Characteristics of Tissue Cultured Mountain Ginseng Roots)

  • 리혁;강태환;녕효봉;조성찬;한충수
    • Journal of Biosystems Engineering
    • /
    • 제34권3호
    • /
    • pp.175-182
    • /
    • 2009
  • This study was conducted to investigate the drying characteristics of tissue cultured mountain ginseng roots. The far infrared rays dryer of a double blast system used for this experiment can control the drying parameters such as far infrared heater temperature and air velocity. The far infrared rays drying tests of tissue cultured mountain ginseng roots were performed at air velocity of 0.4, 0.6, 0.8 m/s, under drying air temperature of 50, 60, and $70^{circ}C$, respectively. The results were compared with one obtained by the heated air drying method. The drying characteristics such as drying rate, color, energy consumption, saponin components and antioxidant activities were analyzed. The results showed that the drying rate of far infrared rays drying was faster than that of heated air drying and due to high temperature of drying air and fast air velocity, the far infrared rays drying of double blast type was superior to the heated air drying. The value of the color difference for heated air drying was 10.11${\sim}$12.99 and that of far infrared rays drying was in the range of 7.05${\sim}$7.54, which was in the same drying condition, also energy consumption of far infrared rays drying was in the range of 3575${\sim}$6898 kJ/kg-water. At the same time, the antioxidant activities using far infrared rays drying were higher than those using heated air drying.

Relationships between LET and RBE of lonizing Radiation in the induction of Somatic Mutations of Drosophila melanogaster

  • 유미애;정운혁;이원호
    • 한국환경성돌연변이발암원학회지
    • /
    • 제7권2호
    • /
    • pp.103-111
    • /
    • 1987
  • The effects of LET (linear energy transfer) of radiation on the induction of somatic chromosome mutations or gene mutations of Drosophila melanogaster were studied. For detecting somatic chromosome mutations and gene mutations, Drosophila wing spot system and eye-color spot system were used, respectively. The frequencies of somatic chromosome mutations or gene mutations induced after third instar larval treatment with 23 MeV neutrons, thermal neutrons, X-rays were examined. From these data, the RBE(relative biological effectiveness) values of 23 MeV neutrons relative to X-rays for induction of somatic chromosome mutations or gene mutations were calculated. The present results suggest that high LET radiations are efficient than X-ray in producing not only somatic chromosome mutations but also gene mutations.

  • PDF

Monte Carlo Simulation of Phytosanitary Irradiation Treatment for Mangosteen Using MRI-based Geometry

  • Oh, Se-Yeol;Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.205-214
    • /
    • 2014
  • Purpose: Phytosanitary irradiation treatment can effectively control regulated pests while maintaining produce quality. The objective of this study was to establish the best irradiation treatment for mangosteen, a popular tropical fruit, using a Monte Carlo simulation. Methods: Magnetic resonance image (MRI) data were used to generate a 3-D geometry to simulate dose distributions in a mangosteen using a radiation transport code (MCNP5). Microsoft Excel with visual basic application (VBA) was used to divide the image data into seed, flesh, and rind. Radiation energies used for the simulation were 10 MeV (high-energy) and 1.35 MeV (low-energy) for the electron beam, 5 MeV for X-rays, and 1.25 MeV for gamma rays from Co-60. Results: At 5 MeV X-rays and 1.25 MeV gamma rays, all areas (seeds, flesh, and rind) were irradiated ranging from 0.3 ~ 0.7 kGy. The average doses decreased as the number of fruit increased. For a 10 MeV electron beam, the dose distribution was biased: the dose for the rind where the electrons entered was $0.45{\pm}0.03$ kGy and the other side was $0.24 {\pm}0.10$ kGy. Use of an electron kinetic energy absorber improved the dose distribution in mangosteens. For the 1.35 MeV electron beam, the dose was shown only in the rind on the irradiated side; no significant dose was found in the flesh or seeds. One rotation of the fruit while in front of the beam improved the dose distribution around the entire rind. Conclusion: These results are invaluable for determining the ideal irradiation conditions for phytosanitary irradiation treatment of tropical fruit.

RW3 고체팬텀에서 고에너지 X-선에 대한 전리함 반응보정인자의 특성에 관한 연구 (Study on the Characteristics of Response Correction Factor of Ionization Chamber in RW3 Solid Phantom for High Energy X-rays)

  • 이정옥;정동혁;김부길
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제32권2호
    • /
    • pp.205-212
    • /
    • 2009
  • 반응보정인자(h)는 고체팬텀에서 전리함의 반응을 물에서의 값으로 변환하기 위한 인자이다. RW3 고체 팬텀의 경우에 고에너지 X-선에 대한 반응보정인자는 선질과 깊이에 의존하는 것으로 알려져 있으나 조사면 크기와 SSD(Source to surface distance), 그리고 전리함 종류에 따른 의존성은 알려진 바가 없다. 본 연구에서는 알려진 의존성을 고찰하고 알려지지 않은 인자들에 대한 의존성을 조사하였다. 본 측정에서는 파머형전리함(FC65G, IBA, Germany)과 소형전리함(CC13, IBA, Germany)이 사용되었으며 대상 선질은 6 MV와 15 MV X-선이었다. 측정 결과 반응보정인자는 6 MV의 경우에 깊이 5 cm와 10 cm에서 각각 h = 1.015, 1.021, 그리고 15 MV의 경우에 깊이 5와 10 cm에서 각각 h = 1.024, 1.029로 나타났다. 결론적으로 반응보정인자는 선질과 깊이에는 의존하였지만 조사면 크기와 SSD에 따른 변화는 적었다. 전리함에 있어서 대상의 두 전리함에 대해서는 차이가 없었으나 다른 종류의 전리함에 대해서 추가적 연구가 필요하다고 생각한다. 본 결과는 RW3에서 전리함을 이용한 측정시 측정값의 분석에 활용될 수 있다.

  • PDF

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구 (X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube)

  • 이상준;김석;백부근
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

Synthesis, physical, optical and radiation shielding properties of Barium-Bismuth Oxide Borate-A novel nanomaterial

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;K.N. Sridhar;M.R. Ambika;L. Seenappa;S. Manjunatha;R. Munirathnam;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1783-1790
    • /
    • 2023
  • Barium Bismuth Oxide Borate (BBOB) has been synthesized for the first time using solution combustion technique. SEM analysis reveal flower shape of the nanoparticles. The formation of the nanoparticles has been confirmed through XRD & FTIR studies which gives the physical and chemical structure of the novel material. The UV light absorption is observed in the range 200-300 nm. The present study highlights the radiation shielding ability of BBOB for different radiations like X/Gamma rays, Bremsstrauhlung and neutrons. The gamma shielding efficiency is comparable to that of lead in lower energy range and lesser than lead in the higher energy range. The bremsstrauhlung exposure constant is comparably larger for BBOB NPs than that of concrete and steel however it is lesser than that of lead. The beauty of BBOB nanoparticles lies in, high absorption of radiations and low emission of secondary radiations when compared to lead. In addition, the neutron shielding parameters like scattering length, absorption and scattering cross sections of BBOB are found to be much better than lead, steel and concrete. Thus, BBOB nanoparticles are highly efficient in absorbing X/Gamma rays, neutrons and bremsstrauhlung radiations.

측정기에 따른 고에너지 X-선의 표면 선량 및 최대 선량 지점 고찰 (Consideration of Surface Dose and Depth of Maximum Dose Using Various Detectors for High Energy X-rays)

  • 이용하;박경란;이종영;이익재;박영우;이강규
    • Radiation Oncology Journal
    • /
    • 제21권4호
    • /
    • pp.322-329
    • /
    • 2003
  • 목적 .: 고에너지 X-선의 표면 선량과 선량보강(build-up) 영역에서의 선량 분포는 일반적으로 방사선 계측에 사용되는 전리함 측정기로는 정확한 선량 분포를 얻기가 매우 어렵다. 본 연구는 고에너지 X-선 선량 계측에 보편적으로 사용되고 있는 여러 측정기를 이용하여 팬톰 표면에서의 흡수선량과 최대 선량 지점(d$_{max}$)을 측정하여 측정기 사이의 정확성을 비교 분석하고, 각 치료 기관에서 보편적으로 사용되는 측정기 중 표면 선량 측정에 적절한 측정장치를 제안하고 그 유용성을 제시하고자 한다. 대상 및 방법 : 본 실험에서는 6 MV와 IS MV X-선에 대해 조사면이 10$\times$10 cm$^{2}$, SSD=100 cm에서 TLD, 팀블형전리함(thimble type ion chamber), 다이오드 검출기, 다이아몬드 검출기와 Markus 평행판 전리함 등을 이용하여 심부선량백분율(percent depth dose: PDD)을 측정하여, 표면 선량(suface dose)과 최대 선량 지점(dnu)을 비교 분석하고, 또한 TLD 측정 시와 동일 조건으로 Monte Cario 계산을 실행하여 TLD의 측정 결과와 비교하였다. 결과: 6 WV와 IS MV X-선에 대해 Markus 평행판 전리함을 이용하여 측정한 표면 선량은 각각 29.31$\%$와 23.36$\%$으로 측정되었으며, TLD는 37.17$\%$와 24.06$\%$, 다이아몬드 검출기는 34.78$\%$와 24.06$\%$, 다이오드 검출기는 38.18$\%$와 27.8$\%$, 팀블형 전리함은 47.92$\%$와 36.06$\%$ 였으며, Monte Cario 계산에 의한 표면 선량 값은 S MV X-선에 대해 TLD 측정 시와 동일한 조건으로 팬톰 내에 가상적인 TLD를 삽입한 경우 36.22$\%$로 실제 측정값 37.17$\%$와 유사하였다. 최대 선량 지점의 깊이는 모든 측정기에서 6 MV X-선에 대하여 14$\~$16 mm, IS MV X-선에서는 27$\~$29 mm사이의 측정기에 따라 작은 차이를 보였다. 결론 : 표면 선량의 경우에는 측정기에 따라 현저한 차이를 보였으며 Markus 평행판 전리함이 사용된 측정기 중가장 정확한 결과를 보였고, 팀블형 전리함의 경우 다른 측정기에 비해 약 10$\%$ 이상 높은 선량을 보여 피부 표면에 가까이 위치한 종양에 대한 방사선 치료 계뵉 시에는 임상에서 가장 보편적으로 사용되고 있는 팀블형 전리함의 선량 값을 그대로 사용하기에는 많은 오류가 발생하므로 가능한 표면 선량 측정에 적절한 측정기를 선택하여 사용하거나 측정기 특성을 고려한 보정이 필요할 것으로 생각된다. 최대 선량 지점(d$_{max}$)의 결과는 모든 측정기에서 비슷한 결과를 나타내고 있어 본 실험에서 사용한 모든 측정기는 그 특성에 상관없이 최대 선량 지점 측정에 사용이 가능함을 알 수 있었다.

A STUDY OF THE DYNAMICAL CROSS CORRELATION FUNCTION IN A BLACK HOLE SOURCE XTE J1550-564

  • SRIRAM, K.;CHOI, C.S.;RAO, A.R.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.599-601
    • /
    • 2015
  • The short time scale X-ray variability associated with the accretion disk around compact objects is complex and is vaguely understood. The study of the cross correlation function gives an insight into the energy dependent behavior of the variations and hence connected processes. Using high resolution RXTE data, we investigate the dynamical cross correlation function of an observation of a black hole source XTE J1550-564 in the steep power law state. The cross correlation between soft and hard X- ray energy bands revealed both correlated and anti-correlated delays (${\leq}{\pm}15s$) on a correlation time scale of 50 s. It was noticed that the observed delays were similar to the delays between X-ray and optical/IR bands in other black hole and neutron star sources. We discuss the possible mechanisms/processes to explain the observed delays in the dynamical CCF.

Mechanism of the X-ray and Soft Gamma-ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58

  • Wang, Yu;Takata, Jumpei;Cheng, Kwong Sang
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권2호
    • /
    • pp.91-94
    • /
    • 2013
  • We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft ${\gamma}$-ray radiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap's electric field separates the opposite charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that from the null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 only receives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star. The X-rays and soft ${\gamma}$-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.