• 제목/요약/키워드: high dose rate

검색결과 878건 처리시간 0.031초

자궁경부암 강내 방사선조사에 있어서 고 및 저 선량율방법에 의한 선량율 비교 고찰 (Comparison Study of Dose Rate and Physical Parameters in Low and High Dose Rate Intracavitary Radiation Systems for Carcinoma of the Uterne Cervix.)

  • 양칠용
    • 대한방사선치료학회지
    • /
    • 제1권1호
    • /
    • pp.70-78
    • /
    • 1985
  • The intrauterine irradiation is essential to achieve adequate tumor dose to centeral tumor mass in radio therapy for uterine malignancy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The comparison study of currently using 2 systems was undertaken. The simulation films and medical records of 135 patients who was treated with intrauterine irradiation at one of general hospitals in Busan and Seoul between Jan. 1983 and June 1983, were critically analized and physical parameters of low dose rate system and remote controlled high dose rate system were measured. The physical parameters include distances between lateral walls of vaginal fornices, longitudinal and lateral angles of tandem to the body axis, the distance from the external os of uterine cervix to the central axis of ovoids, the radiation dose ratio to rectum and bladder to reference point A. Followings were summary of study results: 1. In distances between lateral walls of vaginal fornices the low dose rate system showed wide distribution and relatively larger distances. In low dose rate system 5.0-5.9 cm was $55.89\%$ 6.0-6.9 cm: $23.53\%$, 4.0-4.9cm: $10.29\%$, 3.0-3.9cm: $10.29\%$, and in high dose rate system 5.0-5.9cm was $80.59\%$, 4.0-4.9cm: $17.91\%$, $6.0\~6.9\;cm:\;1.5\%$. 2. In lateral angulation of tandem to body axis, the low does system revealed mid position (the position along body axis) $64.7\%$, Lt. deviation $19.13\%$ and Rt. deviation $16.17\%$. However the high dose rate system revealed mid position $49.26\%$ Lt. deviation $40.29\%$ and Rt. deviation $10.45\%$. 3. In longitudinal angulation of tandem to body axis the mid position was $11.77\%$ and anterior angulation $88.23\%$ in low dose rate system but in high dose rate system the mid position was $1.56\%$ and anterior angulation $98.44\%$. 4. Down ward displacement of ovoids below external os was only $2.94\%$ in low dose rate system and $67.69\%$ in high dose rate system. 5. The radiation dose ration to rectum to reference point A was $102.70\%$ in high dose rate system and $70.09\%$ in low dose rate system. The dose ratio to bladder to reference point A was $78.14\%$ in high dose rate system and $75.32\%$ in low dose rate system.

  • PDF

자궁경부암 강내 방사선 조사장치에 의한 직장 및 방광의 피폭선량 평가 (Dose Distribution of Rectum and Bladder in Intracavitary Irradiation)

  • 추성실;오원용;서창옥;김귀언
    • Radiation Oncology Journal
    • /
    • 제2권2호
    • /
    • pp.261-270
    • /
    • 1984
  • The intrauterine irradiation is essential to achieve adequate tumor dose to central tumor mass of uterine malignancy in radiotherapy. The complications of pelvic organ are known to be directly related to radiation dose and physical parameters. The simulation radiation and medical records of 203 patients who were treated with intrauterine irradiation from Feb. 1983 to Oct. 1983, were critically analized. The physical parameters to include distances between lateral walls of vaginal fornices, longitudinal and lateral angles of tandem applicator to the body axis, the distance from the external os of uterine cervix to the central axis of ovoids were measured for low dose rate irradiation system and high dose rate remote control afterloading system. The radiation doses and dose distributions within cervical area including interesting points and bladder, rectum, according to sources arrangement and location of applicator, were estimated with personal computer. Followings were summary of study results ; 1. In distances between lateral walls of vaginal fornices, the low dose rate system showed as $4\~7cm$ width and high dose rate system showed as $5\~6cm$. 2. In horizontal angulation of tandem to body axis, the low dose rate system revealed mid position$64.6\%$, left deviation $19.2\%$and right deviation $16.2\%$. 3. In longitudinal angulation of tandem to body axis, the mid position was $11.8\%$ and anterior angulation $88.2\%$ in low dose rate system but in high dose rate system, anterior angulation was $98.5\%$. 4. Down ward displacement of ovoids below external os was only $3\%$ in low dose rate system and $66.7\%$ in high dose rate system. 5. In radiation source arrangement, the most activities of tandem and ovoid were 35 by 30 in low dose rate system but 50 by 40 in high dose rate system. 6. In low and high dose rate system, the total doses an4 TDF were 50, 70 Gy and 141, 123, including 40 Gy external irradiation. 7. The doses and TDF in interesting points Co, B, were 93, 47 Gy and 230, 73 in high dose rate system but in low doss rate system, 123, 52 Gy and 262, 75 respectively. 8. Doses and TDF in bladder and rectum were 70, 68 Gy and 124, 120 in low dose rate system, but in high dose rate system, 58, 64 Gy 98, 110 respectively, and then grades of injuries in bladder and rectum were 25, $30\%$ and 18, $23\%$ respectively.

  • PDF

DOSE AND DOSE RATE EFFECTS OF IRRADIATION ON BLOOD COUNT AND CYTOKINE LEVEL IN BALB/c MICE

  • Son, Yeonghoon;Jung, Dong Hyuk;Kim, Sung Dae;Lee, Chang Geun;Yang, Kwangmo;Kim, Joong Sun
    • Journal of Radiation Protection and Research
    • /
    • 제38권4호
    • /
    • pp.179-184
    • /
    • 2013
  • The biological effects of radiation are dependent on the dose rate and dose of radiation. In this study, effects of dose and dose rate using whole body radiation on plasma cytokines and blood count from male BALB/c mice were evaluated. We examined the blood and cytokine changes in mice exposed to a low (3.49m Gy $h^{-1}$) and high (2.6 Gy $min^{-1}$) dose rate of radiation at a total dose of 0.5 and 2 Gy, respectively. Blood from mice exposed to radiation were evaluated using cytokine assays and complete blood count. Peripheral lymphocytes and neutrophils decreased in a dose dependent manner following high dose rate radiation. The peripheral lymphocytes population remained unchanged following low dose rate radiation; however, the neutrophils population increased after radiation. The sera from these mice exhibited elevated levels of flt3 ligand and granulocyte-colony-stimulating factor (G-CSF), after high/low dose rate radiation. These results suggest that low-dose-rate radiation does not induce blood damage, which was unlike high-dose-rate radiation treatment; low-dose-rate radiation exposure activated the hematopoiesis through the increase of flt3 ligand and G-CSF.

고선량율 원격강내조사의 코발트-60 이동선원에 의한 선량특성 (Dose Characteristics by the Co-60 Source Oscillations in High Dose Rate After Loading Irradiations)

  • 최태진;김옥배;노홍균
    • 한국의학물리학회지:의학물리
    • /
    • 제1권1호
    • /
    • pp.51-60
    • /
    • 1990
  • Dose distributions around Co- 60 moving source in high dose rate remote afterloading unit, Buchler 3K unit, were experimented with X-omat V films and calculations. In our experiments, film dosimetries have achieved to evaluated the axial dose distributions for source oscillations were 0, 3.5, 5.0 and 6.0 cm in periodically, In results, the dose distributions in axial of source movement showed apparently higher than in transverse direction caused by source locations, dwelling time and air gap in the applicator. In the calculations, the dose rate was derived by using the inverse square law, filteration corrections and Meisberger constant for scatter corrections as source movings. In our experiments and calculations, the average dose uncertainties were showed -2.1$\pm$1.9% in fixed sourdce, -2.9$\pm$1.8%, -7.4$\pm$6.1% and -6.7$\pm$4.6% at 3.5 cm, 5.0 cm and 6.0 cm source oscillations, but the calculations have showed very close to experimental dose rate within 4 cm distance from source.

  • PDF

고 선량율 감마선 조사에 따른 렌즈의 열화 (A CCD Camera Lens Degradation Caused by High Dose-Rate Gamma Irradiation)

  • 조재완;이준구;허섭;구인수;홍석붕
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1450-1455
    • /
    • 2009
  • Assumed that an IPTV camera system is to be used as an ad-hoc sensor for the surveillance and diagnostics of safety-critical equipments installed in the in-containment building of the nuclear power plant, an major problem is the presence of high dose-rate gamma irradiation fields inside the one. In order to uses an IPTV camera in such intense gamma radiation environment of the in-containment building, the radiation-weakened devices including a CCD imaging sensor, FPGA, ASIC and microprocessors are to be properly shielded from high dose-rate gamma radiation using the high-density material, lead or tungsten. But the passive elements such as mirror, lens and window, which are placed in the optical path of the CCD imaging sensor, are exposed to a high dose-rate gamma ray source directly. So, the gamma-ray irradiation characteristics of the passive elements, is needed to test. A CCD camera lens, made of glass material, have been gamma irradiated at the dose rate of 4.2 kGy/h during an hour up to a total dose of 4 kGy. The radiation induced color-center in the glass lens is observed. The degradation performance of the gamma irradiated lens is explained using an color component analysis.

Initial Dosimetry of a Prototype Ultra-High Dose Rate Electron-Beam Irradiator for FLASH RT Preclinical Studies

  • Hyun Kim;Heuijin Lim;Sang Koo Kang;Sang Jin Lee;Tae Woo Kang;Seung Wook Kim;Wung-Hoa Park;Manwoo Lee;Kyoung Won Jang;Dong Hyeok Jeong
    • 한국의학물리학회지:의학물리
    • /
    • 제34권3호
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: FLASH radiotherapy (RT) using ultra-high dose rate (>40 Gy/s) radiation is being studied worldwide. However, experimental studies such as preclinical studies using small animals are difficult to perform due to the limited availability of irradiation devices and methods for generating a FLASH beam. In this paper, we report the initial dosimetry results of a prototype electron linear accelerator (LINAC)-based irradiation system to perform ultra-high dose rate (UHDR) preclinical experiments. Methods: The present study used the prototype electron LINAC developed by the Research Center of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Korea. We investigated the beam current dependence of the depth dose to determine the optimal beam current for preclinical experiments. The dose rate in the UHDR region was measured by film dosimetry. Results: Depth dose measurements showed that the optimal beam current for preclinical experiments was approximately 33 mA, corresponding to a mean energy of 4.4 MeV. Additionally, the average dose rates of 80.4 Gy/s and 162.0 Gy/s at a source-to-phantom surface distance of 30 cm were obtained at pulse repetition frequencies of 100 Hz and 200 Hz, respectively. The dose per pulse and instantaneous dose rate were estimated to be approximately 0.80 Gy and 3.8×105 Gy/s, respectively. Conclusions: Film dosimetry verified the appropriate dose rates to perform FLASH RT preclinical studies using the developed electron-beam irradiator. However, further research on the development of innovative beam monitoring systems and stabilization of the accelerator beam is required.

고선량율 관내 방사선치료를 위한 종양선량분포의 최적화에 대한 연구 (Optimization of Dose Distribution for High Dose Rate Intraluminal Therapy)

  • 추성실;김귀언;노준규
    • Radiation Oncology Journal
    • /
    • 제12권2호
    • /
    • pp.243-252
    • /
    • 1994
  • 원격조종 아프터로딩에 의한 고선량율 관내삽입조사는 체내 발생된 종양에 방사선원을 근접시켜 치료하는 방사선요법으로서 신속한 선량계산과 선량의 정확성 및 다양한 모양의 최적선량분포가 요구된다. 저자들은 크기가 작고 선량율이 높은 고선량율의 방사성동위원소에 대한 정확한 조사선량과 최적선량분포를 얻기 위하여 수학적인 콤퓨터 계산프로그램과 실측으로서 비교하였다. 고선량율 선원에 의한 방사선 조사선량과 조직내 흡수선량분포는 각각 Sievert적분식과 Meisberger의 다항식을 이용하여 작성하였다. 종양크기와 모양에 가장 알맞는 선량분포의 최적화를 실현하기 위하여 저자들은 치료기준점의 선량을 일정한 값으로 고정시키고 선원의 조사시간을 조정하는 선형반복 계산방정식을 이용하였다. 모형선원이 장착된 아프터로딩관을 삽입하고 조준엑스선으로 촬영하여 종양부위를 결정한 후 콤퓨터의 도움으로 아프터로딩관의 축과 평행한 등량곡선 또는 과일모양의 선량분포 및 기관지 모양의 등선량분포가 성취되도록 선량최적화를 시행하였고 선량계에 의한 실측치와 오차가 $3\%$이하로 잘 일치하였다.

  • PDF

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

CMOS 소자에서 과도방사선펄스에 의한 Dose-Rate Latchup 모의실험 (Simulation for Dose-Rate Latchup by Transient Radiation Pulse in CMOS Device)

  • 이현진;이남호;황영관
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.1185-1186
    • /
    • 2008
  • A nuclear explosion emits a transient radiation pulse like gamma rays. Gamma rays have a high energy and cause unexpected effects in semiconductor devices. These effects are mainly referred to dose-rate latcup and dose-rate upset. By transient radiation pulse in CMOS devices, dose-rate latchup is simulated in this paper.

  • PDF

전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 - (Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment -)

  • 양해영
    • 한국산업융합학회 논문집
    • /
    • 제15권3호
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.