• Title/Summary/Keyword: high deformation stability

Search Result 200, Processing Time 0.024 seconds

Structural Capability Evaluation of the Conventional and Pilot Type Valves for LNG/LNG-FPSO Ships (LNG/LNG-FPSO 선박용 컨벤셔널 및 파일럿 타입 밸브의 구조성능평가)

  • Hwang, Dong Wook;Kim, Sung Jin;Bae, Jun Ho;Jung, Sung Yuen;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1331-1339
    • /
    • 2012
  • Safety valve used in LNG/LNG-FPSO ships is a high value valve, and it plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of pipes in LNG piping system under the cryogenic and high-pressure condition when the pressure of the system connected with the LNG storage tank and pipes reaches over the set pressure. The structural stability is required for the inner pressure and thermal load because of the cryogenic and high-pressure condition, and a reliability of the safety valve is necessary for impact and deformation by opening the valve. But, the safety valve, which plays a key role for a safety of the transport and storage system, is depended on imports for over 90%, and in domestic production, the design of the valve is performed on the basis of experiences of the works without quantitative analysis for the inner operation characteristics and structural stability of the valve. In this study, impact velocity is calculated by theoretical analysis for obtaining the structural stability of the guide according to the impact load by opening the valve. The shape of the guide and the diaphragm for satisfying the structural stability are suggested and verified by using a thermal-structural analysis.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Stress distribution in implant abutment components made of titanium alloy, zirconia, and polyetheretherketone: a comparative study using finite element analysis (티타늄 합금, 지르코니아, 폴리에테르에테르케톤 지대주 재질에 따른 임플란트 구성요소의 응력분포: 유한 요소 분석을 통한 비교 연구)

  • Sung-Min Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.21-27
    • /
    • 2024
  • Purpose: This study aimed to analyze the stress distribution and deformation in implant abutments made from titanium (Ti-6Al-4V), zirconia, and polyetheretherketone (PEEK), including their screws and fixtures, under various loading conditions using finite element analysis (FEA). Methods: Three-dimensional models of the mandible with implant abutments were created using Siemens NX software (NX10.0.0.24, Siemens). FEA was conducted using Abaqus to simulate occlusal loads and assess stress distribution and deformation. Material properties such as Young's modulus and Poisson's ratio were assigned to each component based on literature and experimental data. Results: The FEA results revealed distinct stress distribution patterns among the materials. Titanium alloy abutments exhibited the highest stress resistance and the most uniform stress distribution, making them highly suitable for long-term stability. Zirconia abutments showed strong mechanical properties with higher stress concentration, indicating potential vulnerability to fracture despite their aesthetic advantages. PEEK abutments demonstrated the least stress resistance and higher deformation compared to other abutment materials, but offered superior shock absorption, though they posed a higher risk of mechanical failure under high load conditions. Conclusion: The study emphasizes the importance of selecting appropriate materials for dental implants. Titanium offers durability and uniform stress distribution, making it highly suitable for long-term stability. Zirconia provides aesthetic benefits but has a higher risk of fracture compared to titanium. PEEK excels in shock absorption but has a higher risk of mechanical failure compared to both titanium and zirconia. These insights can guide improved implant designs and material choices for various clinical needs.

Prediction of Cumulative Plastic Displacement in the Concrete Track Roadbed Caused by Cyclic Loading (반복하중에 의한 콘크리트 궤도 노반의 누적 소성 변위 예측)

  • Won, Sang-Soo;Lee, Jin-Wook;Lee, Seong-Hyeok;Jung, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Plastic deformation of roadbed influences the stability and maintenance of concrete slab track. Long-term plastic deformation in a railway roadbed is generated primarily due to accumulated inelastic strains caused by repeated passing of trains. Prediction of cumulative plastic deformation is important in cost-effective maintenance of railway tracks as well as for the safe operation of trains. In this study, the vertical displacements in railway roadbeds with different thicknesses of reinforced roadbed were computed. Parameters of the power model for cumulative plastic strain were calibrated by using the data from triaxial tests and full-scale loading tests. Results of three-dimensional finite element analyses of standard roadbed sections provide us with design guidelines for the selection of the thickness of reinforced roadbed.

Thermal Behavior of Ventilated Disc Brakes Considering Contact Between Disc and Pad (디스크 브레이크와 패드의 접촉을 고려한 벤틸레이티드 디스크 브레이크의 열적거동에 관한 연구)

  • Ma, Jeong-Beom;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.259-265
    • /
    • 2014
  • When the brakes of a vehicle are applied, large amounts of heat are generated on the surfaces of the brake discs owing to friction between the discs and the brake pads. A high temperature gradient on the disc surfaces leads to thermal deformation and severe disc abrasion. Ultimately, the thermal deformation and disc wear give rise to a thermal judder phenomenon, which has a major effect on the stability of the vehicle. To investigate and propose a solution to these problems, thermoelastic instabilities under applied thermal and mechanical loads were analyzed using the commercial finite element package ANSYS by considering the contact surfaces between the discs and pads. Direct-contact three-dimensional finite elements between the discs and pads were applied to investigate the disc friction temperature, thermal deformation, and contact stress so that the thermal judder phenomenon on the surface of the disc could be predicted.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion

  • Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Hyoung Seop Kim;Jae Wung Bae;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBF-processed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.

A Study of Structural Stability of Complex CNC Automatic Lathe Base (CNC 복합자동선반 베이스 구조 안전성에 관한 연구)

  • Lee, Sang-Hyeop;Yang, Dong-Ho;Cha, Seung-Whan;Kwak, Jin;Lee, Jong-Chan;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.80-85
    • /
    • 2021
  • This study is to evaluate the structural stability of heavy duty structure of the Complex CNC automatic lathe. The analysis conditions were analyzed by applying the weight and load of the part itself and then applying the weight of the upper assembly unit. As a result of the structural analysis, the values of stress and strain are small and safety factor is high, and as a result of the dynamic analysis, there will be no resonance outside the equipment driving area, so there will be no problem in equipment stability.

High speed milling titanium alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Ming CHEN;Youngmoon LEE;Seunghan YANG;Seungil CHANG
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.454-459
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration, the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. the chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number og shear ribbons and bigger shear angle than at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability region, depression of temperature increment, auti-fatigability as well as surface roughness. The burrs always exists both at low cutting speed and at high cutting speed. So the deburr process should be arranged for milling titanium alloy in any case.

  • PDF

Study on the Fabrication of Various AAO Membranes for the Application of Li-ion Battery Separator (다양한 형태의 AAO membrane 제조 및 리튬이온 전지의 분리막 응용 연구)

  • Kim, Moonsu;Lim, Kyungmin;Ha, Jaeyun;Kim, Yong-Tae;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.5
    • /
    • pp.213-221
    • /
    • 2021
  • In order to improve the energy density and safety of Li-ion batteries, the development of a separator with high thermal stability and electrolyte wettability is an important desire. Thus, the ceramic separator to replace the polymer type is one of the most promising materials that can prevent short-circuit caused by the formation of dendrite and thermal deformation. In this study, we introduce the fabrication of various anodic aluminum oxide membranes for the application of Li-ion battery separators with the advantages of improved mechanical/thermal stability, wettability, and a high rate of Li+ migration through the membrane. Two different types of through-holes and branched anodic aluminum oxide membranes are well used in lithium-ion battery separators, however, branched anodic aluminum oxide membranes exhibit the most improved performance with capacity (126.0 mAh g-1 @ 0.3C), capacity drop at the high C-rate (30.6 %), and low internal resistance (8.2 Ω).