• 제목/요약/키워드: high deformation stability

검색결과 200건 처리시간 0.022초

Three-dimensional finite element analysis of the deformation of the human mandible: a preliminary study from the perspective of orthodontic mini-implant stability

  • Baek, Sun-Hye;Cha, Hyun-Suk;Cha, Jung-Yul;Moon, Yoon-Shik;Sung, Sang-Jin
    • 대한치과교정학회지
    • /
    • 제42권4호
    • /
    • pp.159-168
    • /
    • 2012
  • Objective: The aims of this study were to investigate mandibular deformation under clenching and to estimate its effect on the stability of orthodontic mini-implants (OMI). Methods: Three finite element models were constructed using computed tomography (CT) images of 3 adults with different mandibular plane angles (A, low; B, average; and C, high). An OMI was placed between #45 and #46 in each model. Mandibular deformation under premolar and molar clenching was simulated. Comparisons were made between peri-orthodontic mini-implant compressive strain (POMI-CSTN) under clenching and orthodontic traction forces (150 g and 200 g). Results: Three models with different mandibular plane angles demonstrated different functional deformation characteristics. The compressive strains around the OMI were distributed mesiodistally rather than occlusogingivally. In model A, the maximum POMI-CSTN under clenching was observed at the mesial aspect of #46 (1,401.75 microstrain [${\mu}E$]), and similar maximum POMI-CSTN was observed under a traction force of 150 g (1,415 ${\mu}E$). Conclusions: The maximum POMI-CSTN developed by clenching failed to exceed the normally allowed compressive cortical bone strains; however, additional orthodontic traction force to the OMI may increase POMI-CSTN to compromise OMI stability.

고속축중기 시스템의 도입을 위한 고기능 아스팔트 혼합물 및 에폭시의 내구성 평가 (Evaluating Rutting Performance of High-Durability Asphalt Concrete Mixtures and Epoxy Used for Installation of High-Speed Weigh-In-Motion System)

  • 권홍준;이종섭;권오선;권순민
    • 한국도로학회논문집
    • /
    • 제20권4호
    • /
    • pp.7-13
    • /
    • 2018
  • PURPOSES : In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS : In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at $60^{\circ}C$ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.

Improve the stability of high resistance badminton net via reinforced light material: Development of industry and sport economy

  • Qiong Wu;Yi Sun;Wanxing Yin
    • Advances in nano research
    • /
    • 제17권2호
    • /
    • pp.167-179
    • /
    • 2024
  • This study investigates the stability and performance of high-resistance badminton nets through the integration of reinforced lightweight materials. By focusing on the structural and economic impacts, the research aims to enhance both the durability and practicality of badminton nets in professional and recreational settings. Using a combination of advanced material engineering techniques and economic analysis, we explore the development of nets constructed from innovative composites. These composites offer improved resistance to environmental factors, such as weather conditions, while maintaining lightweight properties for ease of installation and use. The study employs high-order shear deformation theory and high-order nonlocal theory to assess the mechanical behavior and stability of the nets. Partial differential equations derived from energy-based methodologies are solved using the Generalized Differential Quadrature Method (GDQM), providing detailed insights into the thermal buckling characteristics and overall performance. The findings demonstrate significant improvements in net stability and longevity, highlighting the potential for broader applications in both the sports equipment industry and related economic sectors. By bridging the gap between material science and practical implementation, this research contributes to the advancement of high-performance sports equipment and supports the growth of the sport economy.

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

On the buckling of smart beams in racket frames for enhancing the player's control using numerical solution and sinusoidal shear deformation theory

  • Liyan Li;Maryam Shokravi;S.S. Wang
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.657-662
    • /
    • 2024
  • In the present analysis, the buckling behavior of smart beams integrated into racket frames for enhancing player control was examined by numerical solutions and sinusoidal shear deformation theory. The smart beam under consideration is subjected to an external voltage in the thickness direction. The integration of this smart material into the structure of the racket should optimize performance, improving the racket's stability and responsiveness during play. In this, an accurate representation of complex shear effects is made by using a sinusoidal shear deformation theory, while the solution of the resulting governing equations is made by numerical methods. The critical buckling loads and the characteristics of deformation obtained through the analysis provide insight into some design parameters controlling and influencing stability. Obtained results are validated with other published works. The length and thickness of the beam, elastic medium, boundary condition, and influence of external voltages have been represented for buckling load in the structure. These results will help in designing smart racket frames using smart beams to provide more precision and control for the players in an intelligent way.

개질재 첨가에 따른 SMA 혼합물의 소성변형 및 변형강도 특성 연구 (Evaluation of Rutting and Deformation Strength Properties of Polymer Modified SMA Mixtures)

  • 김현환;최영렬;김광우;도영수
    • 한국도로학회논문집
    • /
    • 제11권4호
    • /
    • pp.25-31
    • /
    • 2009
  • SMA 혼합물은 소성변형 저항성이 매우 큰 혼합물로 알려져있다. 하지만 실내 시험에서는 이를 측정할 수 있는 시험법이 아직 미흡한 실정이다. 따라서 본 연구의 목적은 소성변형에 대하여 높은 저항성을 가지는 SMA 혼합물의 변형강도치와 반복주행시험과의 상관성 분석을 통하여 SMA에 변형강도의 적용성을 고찰하는 것이다. 이를 위해 SMA 혼합물의 배합설계를 거쳐 최적 아스팔트함량의 혼합물에 대하여 변형강도 시험과 반복주행 시험을 수행하였다. 연구결과, 변형강도는 SMA 혼합물의 소성변형 특성을 보이기에는 매우 낮은 수준을 나타냈다. 따라서 김테스트에 의한 변형강도는 간접인장강도나 마샬 안정도와 마찬가지로 SMA 혼합물의 소성변형 저항성을 제대로 반영되지 못하는 것을 확인하였다. 또한 반복주행시험의 결과인 동적안정도나 최종침하깊이도 역시 SMA 혼합물의 소성변형 저항성을 평가하는데 문제가 있는 것으로 나타났다.

  • PDF

벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 압축 변형 특성 (High Temperature Compressive Deformation Behavior of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy)

  • 이광석;하태권;안상호;장영원
    • 소성∙가공
    • /
    • 제10권7호
    • /
    • pp.565-572
    • /
    • 2001
  • It is well known that a multicomponent $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk metallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state. DSC and XRD have been performed to confirm the amorphous structure of the master alloy. To investigate the mechanical properties and deformation behavior of the bulk metallic $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$at the various initial strain rates from $2{\times}10^4s^1$ to $2{\times}10^2s^1$. Three types of nominal stress-strain curves have been identified such as linear stress-strain relationship meaning fracture at maximum stress, plastic deformation including stress overshoot and steady-state flow, plastic deformation without stress overshoot depending on the strain rate and test temperature. Also DSC analysis for the compressed specimens was carried out to investigate the change of structure, thermal stability and crystallization behavior for the various test conditions.

  • PDF

유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계 (Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite)

  • 신응수;홍을표;이기녕;김옥현
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

커빅 커플링을 적용한 밀-턴 스핀들의 열-구조 안정성 평가에 관한 해석적 연구 (An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling)

  • 이춘만;정호인
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.100-107
    • /
    • 2020
  • As demand for high value-added products with hard materials increases, the line center is used for producing high value-added products in many industries such as aerospace, automobile fields. The line center is a key device for smart factory automation that can improve the production efficiency and the productivity. Therefore, the development of a mill-turn line center is necessary to produce high value-added products with complex shapes flexibly. In the mill-turn process, a milling process and a turning process are combined. In particular, the turning process needs to increase the rigidity of the spindle. The purpose of this study is to analyze the thermal-structural stability through thermo-structural coupled analysis for a mill-turn spindle with a curvic coupling. The maximum temperature and thermal stability of the spindle were analyzed by thermal distribution. In addition, the thermal deformation and thermal-structural stability of the spindle were analyzed through thermo-structural coupled analysis.

비틀림 변형 중 ITO 필름의 시편 형태에 따른 기계적 전기적 파괴 연구 (Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation)

  • 권용욱;김병준
    • 마이크로전자및패키징학회지
    • /
    • 제24권4호
    • /
    • pp.53-57
    • /
    • 2017
  • 현재 전자 기기에서 가장 대표적인 투명전극은 ITO(Indium Tin Oxide) 필름으로, 우수한 전기적 물성과 광학적 성질로 인해 터치패널, 발광 소자 등 다양한 곳에 사용 중이다. 하지만, 세라믹 재료가 가지는 취성으로 인해, 유연 전자 소자와 같은 곳에 적용할 경우 기계적 변형 중 취성 파괴가 일어나기 쉬우므로 각별한 주의가 필요하다. 본 연구에서는 PET 위에 증착한 ITO 필름에 비틀림 변형이 가해졌을 경우 나타나는 기계적 파괴 및 이에 따라 발생하는 전기적 물성 변화에 대해 연구하였다. 다양한 형태의 시편을 준비하여 비틀림 변형 시 ITO 필름의 전기적 안정성에 대해 연구하였고, 시편의 길이가 길수록 폭이 클수록 면적이 작을수록 비틀림 변형에 취약한 것으로 나타났다. 이를 비틀림 변형 시 발생하는 복합 응력을 고려하여 ITO 필름의 비틀림 안정성에 대해 연구하였다.