• Title/Summary/Keyword: high cut-off frequency

Search Result 159, Processing Time 0.034 seconds

A Study on the Diplexer Switch of High Isolation Using Varactor Diode (바랙터 다이오드를 이용한 높은 격리도를 갖는 DIPLEXER 스위치에 관한 연구)

  • Kang Myung-Soo;Park Jun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.4
    • /
    • pp.178-184
    • /
    • 2005
  • In this paper, using diplexer structure and varactor diode controlled by reverse bias voltage for diplexer switch gives possibilities to improve isolation and current characteristics. 1 have newly designed switch with high isolation by application varactor diode corresponding to capacitor of diplexer. The low-pass filter for proposed tunable diplexer passes the microwave signal in the bandwidth for wireless cellular network systems and high-pass filter passes it in the bandwidth for wireless personal communication services (PCS) network systems. As the capacitance of the low-pass filter increases, the cut-off frequency can be moved to low frequency, so that the switch is on state in cellular bandwidth and off state in the PCS bandwidth, in contrast to, as the capacitance for attenuation characteristic of high-pass filter increases, it can be moved to high frequency, so that the switch is off state and on state in the cellular bandwidth. it is possible to improve isolation and current consumption characteristics by application diplexer design methods and varactor diode. 1 expect that the tunable diplexer circuit and design methods should be able to find applications on MMIC and low temperature copired ceramic (LTCC).

Acoustic Wave Propagation Characteristics Corresponding to the Cut-off Frequency in Gas Pipeline (가스 배관의 차단 주파수에 따른 음파전달특성 연구)

  • Kim, Min-Soo;Lee, Sang-Kwon;Jang, Sang-Yup;Koh, Jae-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.693-700
    • /
    • 2008
  • High-Pressure gas Pipeline which is buried in underground has the Possibility that will be exposed to unexpected dangerous impact of construction equipment. To protect from this kind of danger, the real-time health monitoring system of the high-pressure gas pipeline is necessary. First of all, to make the real-time health monitoring system clearly, the acoustic wave propagation characteristics which are made from various construction equipment impacts must be identified. In link of technical development that prevents the damage of high-pressure gas pipeline, this paper gives FEM(finite element method) and BEM(boundary element method) solutions to identify the acoustic wave propagation characteristic of the various impact input signals which consist of Direc delta function and convolution signal of 45 Hz square signal and random signal.

Practical coherency model suitable for near- and far-field earthquakes based on the effect of source-to-site distance on spatial variations in ground motions

  • Yu, Rui-Fang;Abduwaris, Abduwahit;Yu, Yan-Xiang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.651-666
    • /
    • 2020
  • In this study, the spatial variation mechanisms of large far-field earthquakes at engineering scales are first investigated with data from the 2008 Ms 8.0 Wenchuan earthquake. And a novel 'coherency cut-off frequency' is proposed to distinguish the spatial variations in ground motions in the low-frequency and high-frequency ranges. Then, a practical piecewise coherency model is developed to estimate and characterize the spatial variation in earthquake ground motions, including the effects of source-to-site distances, site conditions and neighboring topography on these variations. Four particular earthquake records from dense seismograph arrays are used to investigate values of the coherency cut-off frequency for different source-to-site distances. On the basis of this analysis, the model is established to simulate the spatial variations, whose parameters are suitable for both near- and far-field earthquake conditions. Simulations are conducted to validate the proposed model and method. The results show that compared to the existing models, the proposed model provides an effective method for simulating the spatial correlations of ground motions at local sites with known source-to-site distances.

High Performance Silicon LDMOSFET for RF Power Amplifiers (RF 전력증폭기용 고성능 실리콘 LDMOSFET)

  • 신창희;김진호;권오경
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.695-698
    • /
    • 2003
  • This paper presents a Si power LDMOSFET for power amplifiers in the 1.8-2.2GHz frequency range for the base station of personal communication systems. To improve the cut-off frequency, the proposed Si power LDMOSFET has small gate to drain capacitance by shielding the electric fields with extended source electrode and forming the field oxide structure in drain region. The proposed Si power LDMOSFET can be used for a power amplifier and it has 32% of power added efficiency and 39.5dBm of output power when the supply voltage is 28V and the operating frequency is 1.9GHz.

  • PDF

Design and Fabrication of Diplexer using Lumped Elements (집중 소자를 이용한 다이플렉서 설계 및 제작)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • In this study, the diplexer used a separator or a combine of signals was designed and its characteristics were investigated. The diplexer consists of two fixed tuned bandpass filter such as low pass filter(LPF) and high pass filter(HPF) sharing a common part and was simulated. The diplexer with micro-strip structure was fabricated. The LPF of diplexer has insertion loss of -0.4 dB, return loss of -30 dB and 1.6 GHz cut-off frequency and HPF has insertion loss of -0.8 dB, return loss of -30 dB and 1.9 GHz cut-off frequency, respectively.

Enhanced Dynamic Response of SRF-PLL System for High Dynamic Performance during Voltage Disturbance

  • Choi, Hyeong-Jin;Song, Seung-Ho;Jeong, Seung-Gi;Choi, Ju-Yeop;Choy, Ick
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.369-374
    • /
    • 2011
  • Usually, a LPF (low pass filter) is used in the feedback loop of a SRF (synchronous reference frame) - PLL (phase locked loop) system because the measured grid voltage contains harmonic distortions and sensor noises. In this paper, it is shown that the cut-off frequency of the LPF should be designed to suppress the harmonic ripples contained in the measured voltage. Also, a new design method for the loop gain of the PI-type controller in the SRF-PLL is proposed with consideration of the dynamics of the LPF. As a result, a better transient response can be obtained with the proposed design method. The LPF frequency and the PI controller gain are designed in coordination according to the steady state and dynamic performance requirements. Furthermore, in the proposed method, the controller gain and the LPF cut-off frequency are changed from their normal value to a transient value when a voltage disturbance is detected. This paper shows the feasibility and usefulness of the proposed methods through the computer simulations and experimental results.

Prediction on the Performance of Polymer-Based Mechanical Low-Pass Filters for High-G Accelerometers (고충격 가속도센서용 고분자 기반 기계식 저역통과필터의 성능 예측)

  • Sehwan Song;Junyong Jang;Youlim Lee;Hanseong Jo;Sang-Hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.262-272
    • /
    • 2023
  • A polymer-based mechanical low-pass filter(m-LPF) for high-g accelerometers makes it possible to remove high-frequency transient noises from acceleration signals, thus ensuring repeatable and reliable measurement on high-g acceleration. We establish a prediction model for performance of m-LPF by combining a fundamental vibration model with the fractional derivative standard linear solid(FD SLS) model describing the storage modulus and loss modulus of polymers. Here, the FD SLS model is modified to consider the effect of m-LPF shape factor (i.e., thickness) on storage modulus and loss modulus. The prediction accuracy is verified by comparing the displacement transmissibility(or cut-off frequency) estimated using our model with that measured from 3 kinds of polymers(polysulfide rubber(PSR), silicone rubber(SR), and polydimethylsiloxane(PDMS)). Our findings will contribute a significant growth of m-LPF for high-g accelerometers.

A $0.13-{\mu}m$ CMOS Active-RC Filter for LTE-Advanced Systems (LTE-Advanced 표준을 지원하는 $0.13-{\mu}m$ CMOS Active-RC 필터 설계)

  • Lee, Kyoung-Wook;Kim, Jong-Myeong;Park, Min-Kyung;Hyun, Seok-Bong;Jung, Jae-Ho;Kim, Chang-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.396-397
    • /
    • 2011
  • This paper has proposed a multi-channel low pass filter (LPF) for LTE-Advanced systems. The proposed LPF is an active-RC 5th chebyshev topology with three cut-off frequencies of 5 MHz, 10 MHz, and 40 MHz. A 3-bit tuning circuit has been adopted to prevent variations of each cut-off frequency from process, voltage, and temperature (PVT). To achieve a high cut-off frequency of 40 MHz, an operational amplifier used in the proposed filter has employed a PMOS cross-connection load with a negative impedance. A proposed filter has been implemented in a $0.13-{\mu}m$ CMOS technology and consumes 20.2 mW with a 1.2V supply voltage.

  • PDF

Development of High Frequency Active Filter for Multimedia (멀티미디어용 고주파 Active Filter개발에 관한 연구)

  • 윤종남
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • The purpose of this work is to develop High-Frequency Active Filter and super-miniaturation technology(SMD Type) of Filter which are essential for the key R/F Microwave components in the Mobile telecommunication system. The cut-off frequency of high frequency active filter for multimedia is 2.5 MHz, the gain is 0.5dB at 100 kHz, the passband ripple is 1.2 dB max at 100 kHz~2.0 kHz, GDT is 60 nsec at 100 kHz-2.0 MHz, the attenuation is 40 dB min at 3.75 MHz.

  • PDF