• 제목/요약/키워드: high current density

검색결과 2,265건 처리시간 0.031초

급속응고법을 이용한 Bi 계 고온초전도체 전류도입선 제조 (Current Leads Fabrication of High $T_c$ Bi System Superconductor Using Rapid Cooling Method)

  • 박용민;한진만;류운선;류운선
    • 한국전기전자재료학회논문지
    • /
    • 제13권3호
    • /
    • pp.254-258
    • /
    • 2000
  • Current leads of high $T_{c}$ superconductor were fabricated with Bi excess B $i_{2.2}$/S $r_{1.8}$/C $a_{1}$/C $u_{2}$/ $O_{x}$ composition by rapid cooling method. The dimensions of final samples were fixed 3 mm and 8 mm diameter with 50 mm length each To control uniform density the samples were preformed by CIP(Cold Isostatic Press) process and followed by partial or full melting process after raising up to 90$0^{\circ}C$ for 30min. Plate shaped microstructure was clearly observed adjacent to the Ag tube wall and the size of plate was about 100$\mu$m. However the severe destruction of growth orientation was shown in the inner growth part. critical temperature ( $T_{c}$) was about 53~71K after directional growth while Tc was decreased about 77~80 K before directional growth. After directional growth critical current( $I_{c}$) and critical current density( $J_{c}$) in the specimen of 8 mm diameter at 50 K were about 110 A and 280 A/c $m^2$ respectively.pectively.ely.

  • PDF

양극산화에 의한 다공성 알루미나 막의 기체투과 특성 (Gas Permeation Characteristics of Porous Alumina Membrane Prepared by Anodic Oxidation)

  • 함영민
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.72-78
    • /
    • 1998
  • For investigation into gas permeation characteristics, the porous alumina membrane with asymmetrical structure, having upper layer with 10 nanometer under of pore diameter and lower layer with 36 nanometer of pore diameter, was prepared by anodic oxidation using DC power supply of constant current mode in an aqueous solution of sulfuric acid. The aluminium plate was pre-treated with thermal oxidation, chemical polishing and electrochemical polishing before anodic oxidation. Because the pore size depended upon the electrolyte, electrolyte concentration, temperature, current density, and so on, the the membranes were prepared by controling the current density, as a very low current density for upper layer of membrane and a high current density for lower layer of membrane. By control of current quantity, the thicknesses of upper layer of membranes were about $6{\;}{\mu}m$ and the total thicknesses of membranes were about $80-90{\;}{\mu}m$. We found that the mechanism of gas permeation depended on model of the Knudsen flow for the membrane prepared at each condition.

  • PDF

Corrosion Rate of Buried Pipeline by Alternating Current

  • Song, H.S.;Kim, Y.G.;Lee, S.M.;Kho, Y.T.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • 제4권1호
    • /
    • pp.1-7
    • /
    • 2005
  • An alternating current (AC) corrosion on buried pipeline has been studied using coupon and ER probe. Coupons and ER probes were applied to the sites from high value of AC voltage to low value based on the survey of AC voltages on buried gas transmission pipeline over the country. Parameters such as AC current density of coupon, AC voltage, cathodic protection potential, soil resistivity and frequency were monitored continually. Corrosion induced by AC was observed even under cathodically protected condition that met cathodic protection criterion (; below -850 mV vs. CSE). Corrosion rate was affected mainly not by AC voltage but by both of frequency and AC current density. An experimental corrosion rate relation could be obtained according to effective AC current density, in which AC corrosion rate increased linearly with effective AC current density, and its slope was 0.619 in coupon method and 0.885 in ER probes.

온도 Stress에 따른 High-k Gate Dielectric의 특성 연구

  • 이경수;한창훈;최병덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.339-339
    • /
    • 2012
  • 현재 MOS 소자에 사용되고 있는 $SiO_2$ 산화막은 그 두께가 얇아짐에 따라 Gate Leakage current와 여러 가지 신뢰성 문제가 대두되고 있고, 이를 극복하고자 High-k물질을 사용하여 기존에 발생했던 Gate Leakage current와 신뢰성 문제를 해결하고자 하고 있다. 본 실험에서는 High-k(hafnium) Gate Material에 온도 변화를 주었을 때 여러 가지 전기적인 특성 변화를 보는 방향으로 연구를 진행하였다. 기본적인 P-Type Si기판을 가지고, 그 위에 있는 자연적으로 형성된 산화막을 제거한 후 Hafnium Gate Oxide를 Atomic Layer Deposition (ALD)를 이용하여 증착하고, Aluminium을 전극으로 하는 MOS-Cap 구조를 제작한 후 FGA 공정을 진행하였다. 마지막으로 $300^{\circ}C$, $450^{\circ}C$로 30분정도씩 Annealing을 하여, 온도 조건이 다른 3가지 종류의 샘플을 준비하였다. 3가지 샘플에 대해서 각각 I-V (Gate Leakage Current), C-V (Mobile Charge), Interface State Density를 분석하였다. 그 결과 Annealing 온도가 올라가면 Leakage Current와 Dit(Interface State Density)는 감소하고, Mobile Charge가 증가하는 것을 확인할 수가 있었다. 본 연구는 향후 High-k 물질에 대한 공정 과정에서의 다양한 열처리에 따른 전기적 특성의 변화 대한 정보를 제시하여, 향후 공정 과정의 열처리에 대한 방향을 잡는데 도움이 될 것이라 판단된다.

  • PDF

The Stress Dependence of Trap Density in Silicon Oxide

  • Kang, C. S.
    • 대한전자공학회논문지TE
    • /
    • 제37권2호
    • /
    • pp.17-24
    • /
    • 2000
  • In this paper, the stress and transient currents associated with the on and off time of applied voltage were used to measure the density and distribution of high voltage stress induced traps in thin silicon oxide films. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform new both cathode and anode interface. The trap densities were dependent on the stress polarity. The stress generated trap distributions were relatively uniform the order of 1011~1021[states/eV/cm2] after a stress voltage. It appear that the stress and transient current that flowed when the stress voltage were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향 (Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging)

  • 최은혜;이연승;나사균
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.374-378
    • /
    • 2012
  • In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.

최적 전류파형제어를 통한 브러시리스 DC 발전기의 출력밀도 최대화에 관한 연구 (Power Density Maximization of the Brushless DC Generator by Controlling the Optimal Current Waveform)

  • 이형우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권7호
    • /
    • pp.430-436
    • /
    • 2004
  • This paper presents an advanced control technique for power density maximization of the Brushless DC (BLDC) generator by using the linear tracking method. In a generator of given rating, the weight and size of the system affect the fuel consumption directly. Therefore, power density is one of the most important issues in a stand-alone generator. BLDC generator has high power density in the machine point of view and additional increases of power density by control means can be expected. Conventional rectification methods cannot achieve the maximum power possible because of hon-optimal current waveforms. The optimal current waveform to maximize power density and minimize machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation and experimental work. A new simple algebraic method has been proposed to accomplish the proposed control without an FFT which is time consuming and complicated.

Pulse Density Modulation Controlled Series Load Resonant Zero Current Soft Switching High Frequency Inverter for Induction-Heated Fixing Roller

  • Sugimura, Hisayuki;Kang, Ju-Sung;Saha, Bishwajit;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.226-228
    • /
    • 2006
  • This paper presents the two lossless auxiliary inducors-assisted voltage source type half bridge(single ended push pull:SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation forwide its output power regulation ranges and load variations under constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operatprinciple is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation charactertics-based on the high frequency PDM strategy. The experimenoperating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimenones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliimplemented here is proved from the practical point of view.

  • PDF

화학공정을 이용한 초전도 나노 분말 활성 (Fabrication of High Tc Superconducting Nano Powder Using Chemical Process)

  • 이상헌;김찬중;장건익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.547-548
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

  • PDF

Hull Cell에서 전류분포의 균일화에 관한 연구 (A Study on Uniformity of Current Distribution in Hull Cell)

  • 여운관
    • 한국표면공학회지
    • /
    • 제27권6호
    • /
    • pp.340-346
    • /
    • 1994
  • The method of uniforming current distribution in Hull cell are studied by using auxiliary anode, current shield bipolar electrode, and combinings bipolar electrode with current shield in order to find a way of uni-form deposition. The current density distributions are measured by each ammeter of the same inner resistance connected to divided cathode pannel respectively. The current density distributions of cathode electrode divided into five sections with 5mm width have a tendency of linear inclination, and that of twenty sections have a tendency of smoother curve than the curve of original Hull cell pannel. Their results showed lower value on the high current density portion and higher value on the low portion than that original Hull cell pannel. The current distribution in Hull cell is able to unify by using auxiliary anode, or combining bipo-lar electrode with current shield, but not efficient in using one of both individually.

  • PDF