• Title/Summary/Keyword: high compression

Search Result 2,723, Processing Time 0.035 seconds

A High Expansion Effects of Atkinson Cycle by adopting Variable Intake Valve Closing Timing with Compensated Intake Air-mass and Effective Compression Ratio. (흡입공기량 및 유호압축비 보상시 흡입밸브닫힘시기 변화에 의한 고팽창효과)

  • Jeong, Yang-Joo;Kim, Yun-Young;Lee, Jong-Tai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1698-1703
    • /
    • 2004
  • To understand the high expansion effects by adopting intake closing time in the cases of compensating intake air-mass and effective compression ratio simultaneously, fundamental study was carried out by using RICEM realizing Atkinson cycle. Intake air-mass and effective compression ratio were compensated by increasing supercharged pressure and geometric compression ratio. The results showed that the increasing rates of expansion ratio and expansion-compression ratio were increased by compensating both a intake air-mass and effective compression ratio the same tendencies were obtained with the increases of compression ratio and cut off ratio It was also found that LIVC has more advantages in expansion ratio and effective work than those of EIVC under above conditions.

  • PDF

A Hybrid Texture Coding Method for Fast Texture Mapping

  • Cui, Li;Kim, Hyungyu;Jang, Euee S.
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.68-73
    • /
    • 2016
  • An efficient texture compression method is proposed based on a block matching process between the current block and the previously encoded blocks. Texture mapping is widely used to improve the quality of rendering results in real-time applications. For fast texture mapping, it is important to find an optimal trade-off between compression efficiency and computational complexity. Low-complexity methods (e.g., ETC1 and DXT1) have often been adopted in real-time rendering applications because conventional compression methods (e.g., JPEG) achieve a high compression ratio at the cost of high complexity. We propose a block matching-based compression method that can achieve a higher compression ratio than ETC1 and DXT1 while maintaining computational complexity lower than that of JPEG. Through a comparison between the proposed method and existing compression methods, we confirm our expectations on the performance of the proposed method.

Consideration on the rotor design of a claw pump (클로펌프 회전자 설계에 대한 고찰)

  • IN, S.R.
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.257-261
    • /
    • 1999
  • The claw pump, one of oil-less dry pumps developed to solve problems found in vacuum systems pumped by oil-sealed rotary pumps, has been widely used separately or as a part of compound structure with a roots pump. The claw pump has some merits such as a high pumping speed, a high compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is compression ratio, and relatively little heat generation. The high compression ratio of the claw pump is based on efficient sweeping action of the special type rotor and an intrinsic self-valving mechanism. The contour of the rotor with claw-type blade is designed basically to make two rotors revolve smoothly without touching with each other, and related dimensions are determined by required pumping speed, compression ratio, power demand and diameter of the rotor axis. In this paper the procedure of designing the rotor of the claw pump is described and factors influencing the pump performance are analyzed.

  • PDF

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

High Efficient Entropy Coding For Edge Image Compression

  • Han, Jong-Woo;Kim, Do-Hyun;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.31-40
    • /
    • 2016
  • In this paper, we analyse the characteristics of the edge image and propose a new entropy coding optimized to the compression of the edge image. The pixel values of the edge image have the Gaussian distribution around '0', and most of the pixel values are '0'. By using this analysis, the Zero Block technique is utilized in spatial domain. And the Intra Prediction Mode of the edge image is similar to the mode of the surrounding blocks or likely to be the Planar Mode or the Horizontal Mode. In this paper, we make use of the MPM technique that produces the Intra Prediction Mode with high probability modes. By utilizing the above properties, we design a new entropy coding method that is suitable for edge image and perform the compression. In case the existing compression techniques are applied to edge image, compression ratio is low and the algorithm is complicated as more than necessity and the running time is very long, because those techniques are based on the natural images. However, the compression ratio and the running time of the proposed technique is high and very short, respectively, because the proposed algorithm is optimized to the compression of the edge image. Experimental results indicate that the proposed algorithm provides better visual and PSNR performance up to 11 times than the JPEG.

Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression (고강도 콘크리트의 일축 및 이축 압축하의 파괴거동)

  • Lee, Sang-Kuen;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

Investigation of Molding Characteristics in Injection Compression Molding According to Molding Conditions through Birefringence (사출압축성형에서 복굴절을 통한 성형조건에 따른 성형특성 고찰)

  • Lee, Dan Bi;Nam, Yun Hyo;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.193-198
    • /
    • 2014
  • Lens and DVD require high quality of optical property. Conventional injection molded products contain high residual stress and this invokes birefringence since high cavity pressure and high temperature variation are involved in a molding process. Thus these products are often molded by injection compression molding in order to minimize the residual stress through reducing cavity pressure and uniform cavity pressure. In this study, molding parameters affecting molding quality such as property uniformity in injection compression molding were investigated through experiment. Molding quality deviations among the cavities in multi-cavity mold were also studied. Transparent resins, PC and PS were used in this study. Compression gap, compression speed, compression force, and compression delay time for processing variables in injection compression molding were applied in experiment. Compression force, compression delay time, and compression gap significantly affected the optical property of product. The degree of influence of process variable on the product quality was different in different resins. This implies that the optimal operational conditions in injection compression molding existed for each resin according to flow property.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Evaluation of Flow Stress of Metal up to High Strain (금속소재의 고변형률 영역 유동응력선도 평가)

  • Lee, S.K.;Lee, I.K.;Lee, S.Y.;Lee, S.M.;Jeong, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.316-322
    • /
    • 2020
  • The flow stress curve is usually determined via uniaxial tensile or simple compression test. However, the flow stress curve up to high strain cannot be obtained using these two tests. This study presents a simple method for obtaining the flow stress curve up to high strain via FE analysis, a simple compression test, and an indentation test. In order to draw the flow stress curve up to high strain, the indentation test was carried out with the pre-stained specimen using the simple compression test. The flow stress curve of Al6110 was evaluated up to high strain using the proposed method, and the result was compared with the flow stress curve of the uniaxial tensile test of the initial material.