• Title/Summary/Keyword: high blaine cement

Search Result 31, Processing Time 0.027 seconds

Effect of Fine Particle Cement and Recycled Aggregates as Alkali Activator on the Engineering Properties and Micro-Structure of High Volume Blast Furnace Slag Concrete (알칼리 자극제로서 미분시멘트와 순환골재가 고로슬래그 다량치환 콘크리트의 공학적 특성 및 미세구조에 미치는 영향)

  • Han, Min-Cheol;Lee, Hyang-Jae;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.602-608
    • /
    • 2013
  • The aim of this study is to investigate experimentally the effect of the combination of fine particle cement with high Blaine fineness (FC) and recycled aggregates on the engineering properties and micro structure of high volume blast furnace slag (BS) concrete with 75% BS and 21 MPa. FC manufactured by particle classification at the plant with Blaine fineness of more than $7000cm^2/g$ was used as additional alkali activator for high volume blast furnace slag concrete made with recycled fine and coarse aggregates. FC was replaced by 15, 20 and 25% OPC. Test results showed that the incorporation of FC resulted in an increase in the compressive strength compared to BS concrete without FC by as much as 30% due to accelerated hydration and associated latent hydraulic reaction. It was found that the use of FC and recycled aggregates played an important role in activating BS for high volume BS concrete by offering sufficient alkali.

Investigation for Utilization of Separator Bag Filter Cement (세퍼레이터 백필터 집진 미립자시멘트 (SBFC : Separator Bag Filter Cement)의 활용성 검토)

  • Kim, Kyoung-Min;Park, Sang-Joon;Yoo, Jea-Kang;Lee, Eui-Bae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.78-83
    • /
    • 2010
  • This paper presents the feasibility of incorporating ultrafine particles collected in the separator bag filter (separator bag filter cement, SBFC) during the cement manufacturing process as an substitution material for cement. SBFC does not require additional processes needed in the existing processes to manufacture high early strength cement such as modifying mineral components and adjusting the firing temperature. Moreover, it can also solve the issue of efficiency decrease resulted from the increase of the grinding time applied in the existing process of manufacturing microcement. Therefore, this research has examined the characteristics of SBFC and fresh properties and mechanical properties after making paste and mortar using SBFC in order to use SBFC as a material to gain early strength of concrete. For results, analyzing the chemical composition and physical properties of SBFC, its blaine value was $6,953cm^3/g$, about double than that of OPC, but its chemical composition showed no significant difference. According to the result of the paste and mortar examination, the paste and mortar mixed with SBFC showed a lower flowability, earlier setting time, and higher compressive strength than that with OPC. The result of microstructure analysis of paste, the paste mixed with SBFC indicated about 9% lower internal porosity at an early age than that of OPC. The compressive strength and flexural strength of mortar were higher in the order of SBFC ratio of 100, 50 and 0% SBFC.

  • PDF

An Experimental Study on Hydration and Strength Development of High Blain Cement at Low Temperature (저온환경에서 고분말도 시멘트의 수화반응 및 강도발현 특성에 관한 실험적 연구)

  • Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung;Kim, Mok-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.367-373
    • /
    • 2015
  • In this study, fundamental properties of cement were reviewed to apply high fineness cement at low temperature environment. The classified high fineness cement has large proportion of particles below $10{\mu}m$ which affects early hydration: an overall reaction of cement hydration faster. As a result of using high fineness cement, setting time of concrete was reduced and compressive strength was higher than OPC at all ages. Especially, compressive strength was more than double its value compared with OPC after three days curing in low temperature. Faster reaction and higher heat of hydration was verified by calorimetry early and maximum heat of hydration was analyzed by adiabatic temperature raising test. The analysis of this study confirmed that high fineness cement can be suitable to be used in low temperature environment.

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Estimation of Compressive Strength of Concrete Incorporating Fine Particle Cement Considering Blaine Fineness (분말도 변화를 고려한 미분시멘트 사용 콘크리트의 압축강도증진 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • This study presents an estimation of the strength development of concrete considering the equivalent age using fine particle cement (FC), which is manufactured according to the classification process. Contents and W/B were considered as experimental parameters. The strength considering the equivalent age is gradually increased, and the deviation of the strength according to W/C is increased with decrease of W/C in accordance with the replacement of the fine particle cement. For estimating the apparent activation energy (Ea) considering setting time and blame fineness of cement, Ea of the FC based on setting time is calculated with $27.6{\sim}28.9$ KJ/mol, which is somewhat similar to that of OPC, while by applying Ea based on blame fineness, Ea is increased with increase of FC contents, and is calculated with $40{\sim}56$ KJ/mol. Good agreement is obtained by applying Ea based on setting time, while there was remarkable variation between calculated value and measured value when Ea based on blame fineness. Therefore, it is necessary to add influencing factors in existing Ea to enhance the accuracy of the estimation.

Optimization of Curing Regimes for Precast Prestressed Members with Early-Strength Concrete

  • Lee, Songhee;Nguyen, Ngocchien;Le, Thi Suong;Lee, Chadon
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.3
    • /
    • pp.257-269
    • /
    • 2016
  • Early-strength-concrete (ESC) made of Type I cement with a high Blaine value of $500m^2/kg$ reaches approximately 60 % of its compressive strength in 1 day at ambient temperature. Based on the 210 compressive test results, a generalized rateconstant material model was presented to predict the development of compressive strengths of ESC at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h) and maximum temperatures (20, 30, 40, 50 and $60^{\circ}C$) for design compressive strengths of 30, 40 and 50 MPa. The developed material model was used to find optimum curing regimes for precast prestressed members with ESC. The results indicated that depending on design compressive strength, conservatively 25-40 % savings could be realized for a total curing duration of 18 h with the maximum temperature of $60^{\circ}C$, compared with those observed in a typical curing regime for concrete with Type I cement.

Effect of blast-furnace slag particle fineness changes on the engineering characteristics of mortar (고로슬래그 미분말의 분말도 변화가 모르타르의 공학적 특성에 미치는 영향)

  • Lee, Jae-Jin;Moon, Byeong-Ryong;Park, Yong-Jun;Joo, Eun-Hui;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.102-103
    • /
    • 2016
  • Recently on construction sites, there is increased use of concrete with large quantities of blast-furnace slag(BS) admixture replacements, for purposes of reducing CO2 created from cement, one of the ingredients of concrete. But such high-BS fineness changes can have a huge effect on the quality of mortar and concrete. Therefore in this study an experiment was conducted in which liquidity and intensity of mortar depending on an artificially-applied change in fineness degree at degree 7. The results, though subtle, were that the larger the fineness degree, liquidity increased and air quantity decreased, and compression and flexural strength increased.

  • PDF

Effect of the Fineness of Fly Ash on the Compressive Strength (플라이애시 입도가 압축강도에 미치는 영향)

  • Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Ahn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • In general, various factors such as grain size, chemical composition, amorphous amount, amorphous Si and Al content of fly ash affect the reaction with cement. In this study, we investigate the effect of fly ash particle characteristics on compressive strength. The standard sand was pulverized to a particle size similar to that of fly ash and the compressive strength was measured by blending with the cement as in fly. Using the measured compressive strength results, strength enhancement by cement hydration reaction and strength enhancement by particle filling effect were confirmed. Strength increment by pozzolanic reaction of fly ash was calculated by using the compressive strength results of mortar substituted with standard powder. As a result of comparison between compressive strengths and the particle characteristics of fly ash, the blaine showed a weak correlation with the compressive strength and the PI(Pozzolanic Index) showed good correlation with the 10% penetration diameter(D10) and the 50% Respectively. Therefore, it is expected that PI will be a good means to evaluate the fly ash characteristics together with the chemical characteristics of fly ash.

The research about properties of modified low heat slag cement (개질 처리된 저발열 슬래그시멘트 특성에 관한 연구)

  • Kim, Hong-Joo;Kim, Won-Ki;Kim, Hoon-Sang;Lee, Won-Jun;Shin, Jin-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.677-680
    • /
    • 2008
  • The surface of particles was energetically modified by inter-grinding OPC and BFS in vibration mill for improvement of the early strength and low-heat evolution of concretes. BFS was pre-grinding in ball-mill to 2535(BS2) and 3245 $cm^2/g$(BS3), in blaine surface area. The inter-grinding time in vibration mill was changed from 10 minutes to 30 minutes. And Mixing ration of BFS to OPC was changed in 60, 70, 80%. After inter-grinding, the change of specific surface area, particle size distribution, hydration heat of cement and compressive strength of mortar were measured. As the result of comparison test with LHC, it was found that the mixture and inter-grinding time satisfying the value of over 100% of compressive strength for 7 days and under 170J/g of heat of hydration for 72 hours. and it was confirmed that the possibility of low heat slag cement utilizing blast furnace slag(BS2, BS3) with the low fineness in high volumes.

  • PDF

A study on the application of waste concrete powder as a material for construction (건설용 재료로써 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Sang-Chel;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.88-94
    • /
    • 2012
  • This study is conducted to utilize waste concrete powder made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was 928 and $1,360cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. The viscosity of the paste that mixed waste concrete power decreased by 62% at the most, compared to the paste that only used OPC, and the final set time was delayed about two hours. As composition rates of waste concrete powder increased, the flow value decreased by 30% at the most according to the comparison with mortar that only used OPC, and sorptivity coefficients increased by 70%. The compressive strength of mortar decreased by 73% at the most as composition rates of waste concrete powder increased. According to the test results, it is desirable to use waste concrete powder by combining OPC appropriately(below 15%).

  • PDF