• Title/Summary/Keyword: high angular resolution

Search Result 102, Processing Time 0.026 seconds

High Spatial Resolution Imaging of the Contiguous Objects Using Sub-Y-Type Interferometric Synthetic Aperture Radiometer

  • Lee Ho-Jin;Park Hyuk;Kim Sung-Hyun;Choi Jun-Ho;Seo Seung-Won;Kim Yong-Hoon;Kang Gum-Sil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.53-56
    • /
    • 2004
  • Recently the interferometric synthetic aperture radiometer with sub-Y-type antenna array was suggested to improve the spatial resolution than that of conventional Y-type with the same number of antenna elements. The sub-Y-type performance has been reported under a point source target. In this paper, the performance of sub-Y-type is evaluated under contiguous objects. The angular resolution of sub-Y-type with 52 antennas was compared with that of Y-type with the 40 antennas. The images of sub-Y -type and Y-type array were simulated under the contiguous objects. The sub-Y-type showed higher resolution than Y-type in the simulation and experiments. The sub-Y-type has high spatial resolution than Y-type in case of contiguous source as well as single point source.

  • PDF

Opticla Angle Sensor Using Pseudorandom-code And Geometry-code (슈도 랜덤 코드와 기하학 코드를 이용한 광학적 Angle Sensor)

  • 김희성;도규봉
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.2
    • /
    • pp.27-32
    • /
    • 2004
  • Absolute optical angle sensor is described that is an essentially digital opto-electronic device. Its purpose is to resolve the relative and absolute angle position of coded disk using Pseudorandom-code and Geometry-code. In this technique, the angular position of disk is determined in coarse sense first by Pseudorandom-code. A further fine angular position data based on Pixel count is obtained by Geometry-code which result 0.006$^{\circ}$ resolution of the system provided that 7 ${\mu}{\textrm}{m}$ line image sensor are used. The proposed technique is novel in a number of aspects, such that it has the non-contact reflective nature, high resolution of the system, relatively simple code pattern, and inherent digital nature of the sensor. And what is more the system can be easily modified to torque sensor by applying two coded disks in a manner that observe the difference in absolute angular displacement. The digital opto-electronic nature of the proposed sensor, along with its reporting of both torque and angle, makes the system ideal for use in intelligent vehicle systems. In this communication, we propose a technique that utilizes Pseudorandom-code and Geometry-code to determine accurate angular position of coded disk. We present the experimental results to demonstrate the validity of the idea.

Two New SiO Maser Sources in High-Mass Star-Forming Regions

  • Cho, Se-Hyung;Yun, Youngjoo;Kim, Jaeheon;Liu, Tie;Kim, Kee-Tae;Choi, Minho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.46.3-46.3
    • /
    • 2016
  • We present the ALMA Cycle 2 results "Two New SiO Maser Sources in High-Mass Star-Forming Regions" which was published in the Astrophysical Journal (Vol. 826, P157, 2016). Silicon monoxide (SiO) masers are rare in star forming regions, with the exception of five known SiO maser sources. However, we detected two new SiO maser sources from infrared loud clumps of the high-mass star forming regions G19.61-0.23 and G75.78+0.34 using the KVN single dish. High angular resolution observations with ALMA and JVLA toward G19.61-0.23 suggest that the deeply embedded young stellar object (YSO) of SMA 1 is powering the SiO masers. In addition, the SiO v=1, J=1-0 line shows four spike features while the v=2 maser shows combined features of one spike and broad wing components, implying energetic activities of the YSO of SMA 1 in the G19.61-0.23 hot molecular core. The SiO v=0, J=2-1 emission shows bipolar outflows in NE-SW direction with respect to the center of the SiO maser source. A high angular resolution map of the SiO v=1, J=2-1 maser in G75.78+0.34 shows that the SiO maser is associated with the CORE source at the earliest stage of high-mass star formation. Therefore, the newly detected SiO masers and their associated outflows will provide good probes for investigating this early high-mass star formation.

  • PDF

Performance Enhancement of a Satellite's Onboard Antenna Tracking Profile using the Ground Station Searching Method

  • Song, Young-Joo;Lee, Jung-Ro;Kang, Jihoon;Jeon, Moon-Jin;Ahn, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.391-400
    • /
    • 2016
  • In satellite operations, stable maneuvering of a satellite's onboard antenna to prevent undesirable vibrations to the satellite body is required for high-quality high-resolution images. For this reason, the onboard antenna's angular rate is typically minimized while still satisfying the system requirement that limits the speed of the onboard antenna. In this study, a simple yet effective method, called the ground station searching method, is proposed to reduce the angular rate of a satellite's onboard antenna. The performance of the proposed method is tested using real flight data from the KOMPSAT-3 satellite. Approximately 83% of arbitrarily selected real flight scenarios from 66 test cases show reductions in the onboard antenna's azimuth angular rates. Additionally, reliable solutions were consistently obtained within a reasonably acceptable computation time while generating an onboard antenna tracking profile. The obtained results indicate that the proposed method can be used in real satellite operations and can reduce the operational loads on a ground operator. Although the current work only considers the KOMPSAT-3 satellite as a test case, the proposed method can be easily modified and applied to other satellites that have similar operational characteristics.

Hidden Monsters in the Submillimeter

  • Wang, Wei-Hao
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.232.2-232.2
    • /
    • 2012
  • Submillimeter Galaxies (SMGs) are high-redshift galaxies undergone extremely intense starbursts. Their UV radiation is heavily extinguished by dust and is re-radiated in the far-IR and submillimeter. They are thought to be progenitors of present-day giant elliptical galaxies and can be tracers of the highest density environment at high redshift. However, because of the low angular resolution of existing single-dish submillimeter telescopes, the progress in understanding the SMG population has been remarkably slow. In this talk, I will outline the outstanding issues in this field, and introduce our Submillimeter Array interferometric studies of SMGs. I will also discuss possible new research that will be enabled by next-generation instruments such as ALMA and LMT.

  • PDF

UNVEILING COMPLEX OUTFLOW STRUCTURE OF UY Aur

  • PYO, TAE-SOO;HAYASHI, MASAHIKO;BECK, TRACY;DAVIS, CHRISTOPHER J.;TAKAMI, MICHIHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.109-112
    • /
    • 2015
  • We present [$Fe\;{\small{II}}$] ${\lambda}1.257{\mu}m$ spectra toward the interacting binary UY Aur with 0".14 angular resolution, obtained with the Near infrared Integral Field Spectrograph (NIFS) combined with the adaptive optics system Altair of the GEMINI observatory. In the [$Fe\;{\small{II}}$] emission, UY Aur A (primary) is brighter than UY Aur B (secondary). The blueshifted and redshifted emission between the primary and secondary show a complicated structure. The radial velocities of the [$Fe\;{\small{II}}$] emission features are similar for UY Aur A and B: ${\sim}-100km\;s^{-1}$ and ${\sim}+130km\;s^{-1}$ for the blueshifted and redshifted components, respectively. Considering the morphologies of the [$Fe\;{\small{II}}$] emissions and bipolar outflow context, we concluded that UY Aur A drives fast and widely opening outflows with an opening angle of ${\sim}90^{\circ}$ while UY Aur B has micro collimated jets.

Event Horizon Telescope : Earth-sized mm-VLBI array to image supermassive black holes

  • Kim, Jae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2019
  • Immediate vicinity of a supermassive black hole (SMBH) is an important place to test general relativity in strong gravity regime. Also, this is a place where mass accretion and jet formation actively occurs at the centers of active galaxies. Theoretical studies predict presence of bright ring-like emission encircling an accreting SMBH with a diameter of about 5 Schwarzschild radii, and a flux depression at the center (i.e., BH shadow). Direct imaging of the BH shadow is accordingly of great importance in modern astrophysics. However, the angular sizes of the horizon-scale structures are desperately small (e.g., ~40-50 microarcseconds (uas) diameter for the nearest best candidates). This poses serious challenges to observe them directly. Event Horizon Telescope (EHT) is a global network of sensitive radio telescopes operating at 230 GHz (1.3 mm), providing ultra-high angular resolution of 20 uas by cutting-edge very long baseline interferometry techniques. With this resolution, EHT aims to directly image the nearest SMBHs; M87 and the galactic center Sgr $A{\ast}$ (~40-50 uas diameters). In Spring 2017, the EHT collaboration conducted a global campaign of EHT and multiwavelength observations of M87 and Sgr $A{\ast}$, with addition of the phased ALMA to the 1.3mm VLBI array. In this talk, I review results from past mm-VLBI and EHT observations, provide updates on the results from the 2017 campaign, and future perspectives.

  • PDF

3-D High Resolution Ultrasonic Transmission Tomography and Soft Tissue Differentiation

  • Kim Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • A novel imaging system for High-resolution Ultrasonic Transmission Tomography (HUTT) and soft tissue differentiation methodology for the HUTT system are presented. The critical innovation of the HUTT system includes the use of sub-millimeter transducer elements for both transmitter and receiver arrays and multi-band analysis of the first-arrival pulse. The first-arrival pulse is detected and extracted from the received signal (i.e., snippet) at each azimuthal and angular location of a mechanical tomographic scanner in transmission mode. Each extracted snippet is processed to yield a multi-spectral vector of attenuation values at multiple frequency bands. These vectors form a 3-D sinogram representing a multi-spectral augmentation of the conventional 2-D sinogram. A filtered backprojection algorithm is used to reconstruct a stack of multi-spectral images for each 2-D tomographic slice that allow tissue characterization. A novel methodology for soft tissue differentiation using spectral target detection is presented. The representative 2-D and 3-D HUTT images formed at various frequency bands demonstrate the high-resolution capability of the system. It is shown that spherical objects with diameter down to 0.3㎜ can be detected. In addition, the results of soft tissue differentiation and characterization demonstrate the feasibility of quantitative soft tissue analysis for possible detection of lesions or cancerous tissue.

Texture Image Fusion on Wavelet Scheme with Space Borne High Resolution Imagery: An Experimental Study

  • Yoo, Hee-Young;Lee , Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • Wavelet transform and its inverse processing provide the effective framework for data fusion. The purpose of this study is to investigate applicability of wavelet transform using texture images for the urban remote sensing application. We tried several experiments regarding image fusion by wavelet transform and texture imaging using high resolution images such as IKONOS and KOMPSAT EOC. As for texture images, we used homogeneity and ASM (Angular Second Moment) images according that these two types of texture images reveal detailed information of complex features of urban environment well. To find out the useful combination scheme for further applications, we performed DWT(Discrete Wavelet Transform) and IDWT(Inverse Discrete Wavelet Transform) using texture images and original images, with adding edge information on the fused images to display texture-wavelet information within edge boundaries. The edge images were obtained by the LoG (Laplacian of Gaussian) processing of original image. As the qualitative result by the visual interpretation of these experiments, the resultant image by each fusion scheme will be utilized to extract unique details of surface characterization on urban features around edge boundaries.

Structure and Physical Conditions in MHD Jets from Young Stars

  • SHANG HSIEN
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.297-299
    • /
    • 2001
  • We have constructed the foundations to a series of theoretical diagnostic methods to probe the jet phenomenon in young stars as observed at various optical forbidden lines. We calculate and model in a self-consistent manner the physical and radiative processes which arise within an inner disk-wind driven magneto centrifugally from the circumstellar accretion disk of a young sun-like star. Comparing with real data taken at high angular resolution, our approach will provide the basis of systematic diagnostics for jets and their related young stellar objects, to attest the emission mechanisms of such phenomena. This work can help bring first-principle theoretical predictions to confront actual multi-wavelength observations, and will bridge the link between many very sophiscated numerical simulations and observational data. Analysis methods discussed here are immediately applicable to new high-resolution data obtained with HST and Adaptic Optics.

  • PDF