DOI QR코드

DOI QR Code

UNVEILING COMPLEX OUTFLOW STRUCTURE OF UY Aur

  • PYO, TAE-SOO (Subaru Telescope, National Astronomical Observatory of Japan) ;
  • HAYASHI, MASAHIKO (School of Mathematical and Physical Science, The Graduate University for Advanced Studies (SOKENDAI)) ;
  • BECK, TRACY (Space Telescope Science Institute) ;
  • DAVIS, CHRISTOPHER J. (Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park) ;
  • TAKAMI, MICHIHIRO (Institute of Astronomy and Astrophysics)
  • Received : 2014.11.30
  • Accepted : 2015.06.30
  • Published : 2015.09.30

Abstract

We present [$Fe\;{\small{II}}$] ${\lambda}1.257{\mu}m$ spectra toward the interacting binary UY Aur with 0".14 angular resolution, obtained with the Near infrared Integral Field Spectrograph (NIFS) combined with the adaptive optics system Altair of the GEMINI observatory. In the [$Fe\;{\small{II}}$] emission, UY Aur A (primary) is brighter than UY Aur B (secondary). The blueshifted and redshifted emission between the primary and secondary show a complicated structure. The radial velocities of the [$Fe\;{\small{II}}$] emission features are similar for UY Aur A and B: ${\sim}-100km\;s^{-1}$ and ${\sim}+130km\;s^{-1}$ for the blueshifted and redshifted components, respectively. Considering the morphologies of the [$Fe\;{\small{II}}$] emissions and bipolar outflow context, we concluded that UY Aur A drives fast and widely opening outflows with an opening angle of ${\sim}90^{\circ}$ while UY Aur B has micro collimated jets.

Keywords

References

  1. Beck, T. L., McGregor, P. J., Takami, M., & Pyo, T.-S., 2008, Spatially Resolved Molecular Hydrogen Emission in the Inner 200 AU Environments of Classical T Tauri Stars, ApJ, 676, 472 https://doi.org/10.1086/527528
  2. Chen, X., Arce, H. G., & Zhang, Q., et al., 2013, SMA Observations of Class 0 Protostars: A High Angular Resolution Survey of Protostellar Binary Systems, ApJ, 768, 110 https://doi.org/10.1088/0004-637X/768/2/110
  3. Close, L. M., Dutrey, A., & Roddier, F., et al., 1998, Adaptive Optics Imaging of the Circumbinary Disk around the T Tauri Binary UY Aurigae: Estimates of the Binary Mass and Circumbinary Dust Grain Size Distribution, ApJ, 499, 883 https://doi.org/10.1086/305672
  4. Connelley, M. S., Reipurth, B., & Tokunaga, A. T., 2008, The Evolution of the Multiplicity of Embedded Protostars. II. Binary Separation Distribution and Analysis, AJ, 135, 2526 https://doi.org/10.1088/0004-6256/135/6/2526
  5. Connelley, M. S., Reipurth, B., & Tokunaga, A. T., 2008, The Evolution of the Multiplicity of Embedded Protostars. I. Sample Properties and Binary Detections, AJ, 135, 2496 https://doi.org/10.1088/0004-6256/135/6/2496
  6. Duchene, G., Monin, J. -L., Bouvier, J., & Menard, F., 1999, Accretion in Taurus PMS Binaries: a Spectroscopic Study, A&A, 351, 954
  7. Duchene, G., Delgado-Donate, E., Haisch, K. E., Jr., Loinard, L., & Rodrguez, L. F., 2007, New Observational Frontiers in the Multiplicity of Young Stars, Protostars and Planets V, 379
  8. Fateeva, A. M., Bisikalo, D. V., Kaygorodov P. V., & Sytov, A. Y., 2011, Gaseous Flows in the Inner Part of the Circumbinary Disk of the T Tauri star, ApSS, 335, 125
  9. Fridlund, C. V. M., & Liseau, R., 1998, Two Jets from the Protostellar System L1551 IRS 5, ApJ, 499, L75 https://doi.org/10.1086/311352
  10. Gunther, R. & Kley, W., 2002, Circumbinary Disk Evolution, A&A, 387, 550 https://doi.org/10.1051/0004-6361:20020407
  11. Haisch, K. E., Jr., Greene, T. P., Barsony, M., & Stahler, S. W., 2004, A Near-Infrared Multiplicity Survey of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds, AJ, 127, 1747 https://doi.org/10.1086/381952
  12. Hanawa, T., Ochi, Y., & Ando, K., 2010, Gas Accretion from a Circumbinary Disk, ApJ, 708, 485 https://doi.org/10.1088/0004-637X/708/1/485
  13. Hioki, T., et al., 2007, Near-Infrared Coronagraphic Observations of the T Tauri Binary System UY Aur, AJ, 134, 880 https://doi.org/10.1086/519737
  14. Hirth, G. A., Mundt, R., & Solf, J., 1997, Spatial and Kinematic Properties of the Forbidden Emission Line Region of T Tauri Stars, A&AS, 126, 437 https://doi.org/10.1051/aas:1997275
  15. Itoh, Y., Kaifu, N., & Hayashi, M., et al., 2000, A Pair of Twisted Jets of Ionized Iron from L 1551 IRS 5, PASJ, 52, 81 https://doi.org/10.1093/pasj/52.1.81
  16. King, R. R., Goodwin, S. P., Parker, R. J., & Patience, J., 2012, Testing the Universality of Star Formation - II. Comparing Separation Distributions of Nearby Star-forming Regions and the Field, MNRAS, 427, 2636 https://doi.org/10.1111/j.1365-2966.2012.22108.x
  17. King, R. R., Parker, R. J., Patience, J., & Goodwin, S. P., 2012, Testing the Universality of Star Formation - I. Multiplicity in Nearby Star-forming Regions, MNRAS, 421, 2025 https://doi.org/10.1111/j.1365-2966.2012.20437.x
  18. Kohler, R., & Leinert, C., 1998, Multiplicity of T Tauri Stars in Taurus after ROSAT, A&A, 331, 977
  19. Kudoh, T., Matsumoto, R., & Shibata, K., 1998, Magnetically Driven Jets from Accretion Disks. III. 2.5-dimensional Nonsteady Simulations for Thick Disk Case, ApJ, 508, 186 https://doi.org/10.1086/306377
  20. Machida, M. N., Inutsuka, S.-i., & Matsumoto, T., 2009, The Circumbinary Outflow: A Protostellar Outflow Driven by a Circumbinary Disk, ApJL, 704, L10 https://doi.org/10.1088/0004-637X/704/1/L10
  21. Mathieu, R. D., 1994, Pre-Main-Sequence Binary Stars, ARAA, 32, 465 https://doi.org/10.1146/annurev.aa.32.090194.002341
  22. McGregor, P., et al., 2003, Gemini Near-infrared Integral Field Spectrograph (NIFS), Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, Proc. SPIE, 4841, 1581
  23. Mundt, R., Hamilton, C. M., Herbst, W., Johns-Krull, C. M., & Winn, J. N., 2010, Bipolar Jets Produced by a Spectroscopic Binary, ApJL, 708, L5 https://doi.org/10.1088/2041-8205/708/1/L5
  24. Murphy, G. C., Lery, T., O'Sullivan, S., et al., 2008, Interacting Jets from Binary Protostars, A&A, 478, 453 https://doi.org/10.1051/0004-6361:20078609
  25. Murphy, G. C., Lery, T., O'Sullivan, S., & Spicer, D. S., 2005, Interacting Multiple Jets from Binary Sources, Protostars and Planets V, 8174
  26. Pyo, T. -S., Hayashi, M., & Kobayashi, N., et al., 2002, Velocity-resolved [Fe II] Line Spectroscopy of L1551 IRS 5: A Partially Ionized Wind under Collimation around an Ionized Fast Jet, ApJ, 570, 724 https://doi.org/10.1086/339728
  27. Pyo, T. -S., Kobayashi, N., & Hayashi, M., et al., 2003, Adaptive Optics Spectroscopy of the [Fe II] Outflow from DG Tauri, ApJ, 590, 340 https://doi.org/10.1086/374966
  28. Pyo, T. -S., Hayashi, M., & Kobayashi, N., et al., 2005, FAST [Fe II] Wind with a Wide Opening Angle from L1551 IRS 5, ApJ, 618, 817 https://doi.org/10.1086/426103
  29. Pyo, T. -S., Hayashi, M., & Kobayashi, N., et al., 2006, Adaptive Optics Spectroscopy of the [Fe II] Outflows from HL Tauri and RW Aurigae, ApJ, 649, 836 https://doi.org/10.1086/506929
  30. Pyo, T.-S., Hayashi, M., Kobayashi, N., Terada, H., & Tokunaga, A. T., 2009, Spatio-Kinematic Structure at the Base of the [Fe II] Jets from L1551 IRS 5, ApJ, 694, 654 https://doi.org/10.1088/0004-637X/694/1/654
  31. Pyo, T.-S., Hayashi, M., Beck, T. L., Davis, C. J., & Takami, M., 2014, [Fe II] Emissions Associated with the Young Interacting Binary UY Aurigae, ApJ, 786, 63 https://doi.org/10.1088/0004-637X/786/1/63
  32. Reipurth, B., 2000, Disintegrating Multiple Systems in Early Stellar Evolution, AJ, 120, 3177 https://doi.org/10.1086/316865
  33. Rodriguez, L. F., D'Alessio, P., Wilner, D. J., et al., 1998, Compact Protoplanetary Disks around the Stars of a Young Binary System, Nature, 395, https://doi.org/10.1038/26421
  34. Takami, M., Bailey, J., & Chrysostomou, A., 2003, A Spectro-Astrometric Study of Southern Pre-main Sequence Stars, Binaries, Outflows, and Disc Structure down to AU Scales, A&A, 397, 675 https://doi.org/10.1051/0004-6361:20021544
  35. Zinnecker, H., & Mathieu, R., 2001, The Formation of Binary Stars, The Formation of Binary Stars, IAU Symp., 200.