• Title/Summary/Keyword: high Reynolds number

Search Result 468, Processing Time 0.032 seconds

Study on the Drag Performance of the Flat Plates Treated by Antifouling Paints (방오 도료가 도장된 평판에 대한 항력 성능 연구)

  • Paik, Bu-Geun;Kim, Kyung-Youl;Cho, Seong-Rak;Ahn, Jong-Woo;Cho, Sang-Rae;Kim, Kyung-Rae;Chung, Young-Uok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • In the present study, the flat plate model test method is developed to evaluate the skin friction of the marine coating in the cavitation tunnel. Six-component force balance is used to measure the profile drag of the flat plate and strut. LDV(laser Doppler velocimetry) technique is also employed to evaluate the drag and to figure out the reason of the drag reduction. The flow velocities above the surface can be used to assess the skin friction, combined with direct force measurement. Since the vortical structure in the coherent turbulence structure influences on the skin friction in the high Reynolds number regime, the interaction between the turbulence structure and the surface wall is paying more attention. This sort of thing is important in the passive control of the turbulent boundary layer because the skin friction can't be determined only by wall condition. As complicated flow phenomena exist around a paint film, systematic measurement and analysis are necessary to evaluate the skin friction appropriately.

Lock-on Characteristics of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성에 관한 연구)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.895-902
    • /
    • 2005
  • Lock-on characteristics of flow around a circular cylinder oscillating rotationally with a relatively high forcing frequency have been investigated experimentally. Dominant governing parameters are Reynolds number (Re), angular amplitude of oscillation (${\theta}_A$), and frequency ratio $F_R=f_f/f_n,\;where\;f_f$ is a forcing frequency and $f_n$ is a natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\pi}/90{\leq}{\theta_A}{\leq}{\pi}/3,\;and\;F_R=1.0$. The effect of this active flow control technique on the lock-on flow characteristics of the cylinder wake was evaluated with wake velocity measurements and spectral analysis of hot-wire signals. The rotational oscillation modifies the flow structure of near wake significantly. The lock-on phenomenon always occurs at $F_R=1.0$, regardless of the angular amplitude ${\theta}_A$. In addition, when the angular amplitude is less than a certain value, the lock-on characteristics appear only at $F_R=1.0$,. The range of lock-on phenomena expands and vortex formation length is decreased, as the angular amplitude increases. The rotational oscillation create a small-scale vortex structure in the region just near the cylinder surface. At ${\theta}_A=60^{\circ}$, the drag coefficient was reduced about $43.7\%$ at maximum.

Experimental Study on Flow Structure of Wake Behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 유동구조에 관한 실험적 연구)

  • Lee Jung-Yeop;Lee Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.298-305
    • /
    • 2006
  • The flow around a circular cylinder which oscillates rotationally with a relatively high forcing frequency has been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), oscillation amplitude $({\theta}_A)$, and frequency ratio $F_R=f_f/f_n$, where $f_f$ is the forcing frequency and $f_n$ is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14{\times}10^3,\;{\theta}_A={\pi}/6$, and $0{\leq}F_R{\leq}2$. The effect of frequency ratio $F_R$ on the flow structure of wake was evaluated by measuring wake velocity profile and spectral analysis of hot-wire signal. Depending on the frequency ratio $F_R$, the cylinder wake has 5 different flow regimes. The vortex formation length and vortex shedding frequency are changed significantly before and after the lock-on regime. The drag coefficient was reduced under the condition of $F_R<1.0$ and the maximum drag reduction is about 33% at $F_R=0.8$. However, the drag is increased as $F_R$ increases beyond $F_R=1.0$. This active flow control method can be effective in aerodynamic applications, if the forcing parameters are selected optimally.

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

Effects of geometric conditions of blade on Performance of Axial Pan (익형의 기하학적 조건에 따른 축류팬의 성능에 관한 연구)

  • Ahn E. Y.;Kim J. W.;Jeongng E. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.25-29
    • /
    • 2005
  • Axial fan is used for the supplement of large amount of flows. Axial blowers show relatively high efficiency of the system. The present model of axial fan is for cooling a condenser in an air-conditioning unit that exhibits tendency toward compact size. In order to realize the compact model, the width of an axial blade should be cut down in axial distance. Main interest lies on the performance of the axial blowing system with blades having shorter chord length. One of the important design parameters for axial fan is the shape of the blades of it. Design of blades includes the cross-sectional shape and its dimension, including the chord length. We consider two types of blades; one is NACA airfoil with normal chord length and the other is with shortening chord length by $10\%$ of normal airfoil. Axial blower with the modified blades is essential for the compact model of an air-conditioner. The other design parameters are same in the two cases. Using a wind tunnel follows ASHRAE standards carries out evaluation of performance of the system. Detail of flows around the blades is prepared by velocity measurements using PIV. According to performance estimation, the axial blower with short chord blade show quite close to the performance results, including flow rate and pressure rise, of the standard one. The reason of the two similar results is that the flowpatterns depend on Reynolds number based on the chord length of a blade. In this investigation, the critical chord length is found, in which the flows near the airfoil are so unstable and the performance of the system is decreased. A series of figures is for the detail information on the flow.

  • PDF

DNS of Drag-Reduced Turbulent Channel Flow due to Polymer Additives (폴리머 첨가제에 의한 항력감소 난류 채널 유동장의 직접수치모사)

  • Kim, Kyoung-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.799-807
    • /
    • 2010
  • Direct numerical simulations (DNS) of turbulent channel flow for which the drag is reduced by using polymer additives have been performed by a pseudo-spectral method. The Reynolds number based on the friction velocity and half-channel height is 395, and the polymeric stresses due to the polymer additives are evaluated using the FENE-P (finitely extensible nonlinear elastic-Peterlin) model. The numerical results show that the drag reduction rate is significantly affected by the parameters used in the FENE-P model, such as the maximum extensibility and relaxation time of the polymer molecules. The turbulence data for both low- and high-drag reduction regimes are analyzed. In addition, the effects of FENE-P model parameters on the flow characteristics have been investigated for the same drag reduction rate due to the polymer additives. Finally, the present DNS results have been used to verify the correlation between rheological parameters and the extent of drag reduction, which was suggested by Li et al. (2006).

Numerical study of fluid behavior on protruding shapes within the inlet part of pressurized membrane module using computational fluid dynamics

  • Choi, Changkyoo;Lee, Chulmin;Park, No-Suk;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.498-505
    • /
    • 2020
  • This study analyzes the velocity and pressure incurred by protruding shapes installed within the inlet part of a pressurized membrane module during operation to determine the fluid flow distribution. In this paper, to find the flow distribution within a module, it investigates the velocity and pressure values at cross-sectional and outlet planes, and 9 sections classified on outlet plane using computational fluid dynamics. From the Reynolds number (Re), the fluid flow was estimated to be turbulent when the Re exceeded 4,000. In the vertical cross-sectional plane, shape 4 and 6 (round-type protrusion) showed the relatively high velocity of 0.535 m/s and 0.558 m/s, respectively, indicating a uniform flow distribution. From the velocity and pressure at the outlet, shape 4 also displayed a relatively uniform fluid velocity and pressure, indicating that fluid from the inlet rapidly and uniformly reached the outlet, however, from detailed data of velocity, pressure and flowrate obtained from 9 sections at the outlet, shape 6 revealed the low standard deviations for each section. Therefore, shape 6 was deemed to induce the ideal flow, since it maintained a uniform pressure, velocity and flowrate distribution.

Visualization Study of High-Incidence Vortical Flow over the LEX/Delta Wing Configuration with Sideslip (옆미끄럼을 갖는 LEX/삼각 날개 형상에 대한 높은 받음각 와유동의 가시화 연구)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.109-117
    • /
    • 2002
  • An off-surface flow visualization experiments have been performed to investigate the flow field over a delta wing with the leading edge extension(LEX). The model is a flat wing with $65^{\circ}$ sweepback angle. The free stream velocity is 6.2 m/s, which corresponds to Reynolds number of $4.4\times10^5$ based on the wing root chord. The angle of attack and sideslip angle range from $16^{\circ}\sim28^{\circ}$ and $0^{\circ}\sim-15^{\circ}$, respectively. The visualization technique of using the micro water-droplet and the laser beam sheet enabled to observe the vortical flow structures, which can not be obtained by 5-hole probe measurements. With sideslip angle, the interaction and breakdown of the LEX and wing vortices was promoted in the windward side, whereas, it was suppressed in the leeward side.

Design of Low Noise Airfoil for Use on Small Wind Turbines (소형 풍력발전기 소음 저감을 위한 익형 설계 연구)

  • Kim, Tae-Hyung;Lee, Seung-Min;Kim, Ho-Geon;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.465-465
    • /
    • 2009
  • Wind power is one of the most reliable renewable energy sources and the installed wind turbine capacities are increasing radically every year. Although wind power has been favored by the public in general, the problem with the impact of wind turbine noise on people living in the vicinity of the turbines has been increased. Low noise wind turbine design is becoming more important as noise is spreading more adverse effect of wind turbine to public. This paper demonstrates the design of 10 kW class wind turbines, each of three blades, a rotor diameter 6.4m, a rated rotating speed 200 rpm and a rated wind speed 10 m/s. The optimized airfoil is dedicated for the 75% spanwise position because the dominant source of a wind turbine blade has been known as trailing edge noise from the outer 25% of the blade. Numerical computations are performed for incompressible flow and for Mach number at 0.145 and for Reynolds numbers at $1.02{\times}10^6$ with a lift performance, which is resistant to surface contamination and turbulence intensity. The objective in the low design process is to reduce noise emission, while sustaining high aerodynamic efficiency. Dominant broadband noise sources are predicted by semi-empirical formulas composed of the groundwork by Brooks et al. and Lowson associated with typical wind turbine operation conditions. During the airfoil redesign process, the aerodynamic performance is analyzed to minimize the wind turbine power loss. The results obtained from the design process show that the design method is capable of designing airfoils with reduced noise using a commercial 10 kW class wind turbine blade airfoil as a basis. The new optimized airfoil clearly indicates reduction of total SPL about 3 dB and higher aerodynamic performance.

  • PDF

Flow Structure of Conical Vortices Generated on the Roof of a Rectangular Prism (직사각형 프리즘 상면에서 발생되는 원추형 와의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • Characteristics of the conical vortices on the roof corner of a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and the height of the model was 5.3$\times$10$^3$. The mean, instantaneous velocity vector fields, vorticity fields, and turbulent kinetic energy distribution were measured for two different angles of attack, 30$^{\circ}$and 45$^{\circ}$. The PIV measurements clearly observed not only the conical main vortex and the secondary vortex but also the tertiary vortex which is firstly reported in this paper. Asymmetric formation of the corner vortex for the case of 30$^{\circ}$angle of attack produces relatively the high magnitude of vorticity and turbulent kinetic energy around the bigger vortex which generates the peak suction pressure on the roof. Fairly symmetric features of the roof vortex are observed in the case of 45$^{\circ}$angle of attack, however, the dynamic characteristics are proved to be asymmetric due to the rectangular shape of the roof.