• Title/Summary/Keyword: hierarchical scheduling system

Search Result 46, Processing Time 0.02 seconds

Hierarchical approaches for the FMS production planning and scheduling problems (FMS의 생산계획 및 일정계획을 위한 단계적 해법에 관한 연구)

  • 장성용;박진우
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.195-208
    • /
    • 1990
  • Flexible Manufacturing System(FMS) is an integrated, computer controlled complex of automated material handling devices and numerically controlled machine tools that can simultaneously process medium-sized volumes of a variety of part types. This paper discusses planning problems that can be solved for efficient use of an FMS and present an integrated decision support system for FMS production planning and scheduling problems. FMSDS(Flexible Manufacturing Systems Decision Support System) consists of data handling modules, part selection module, loading module, load adjusting module, scheduling module and simulation module etc. This paper presents the solution methodology of each subproblems and integrated interfaces between subproblems using hierarchical approaches and loop controls considering the relationships between subproblems. A case study by this model is presented.

  • PDF

A Framework for Hierarchical Production Planning and Control in Make-to-Order Environment with Job Shop (Job Shop 형태를 갖는 주문생산 환경에서의 계층적 생산계획 및 통제 Framework의 설계)

  • 송정수;문치웅;김재균
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.125-125
    • /
    • 1991
  • This paper presents a framework for the hierarchical PPC(Production Planning and Control) in make-to-order environment with job shop. The characteristics of the environment are described as : 1) project with non-repetitive and individual production, 2) short delivery date, 3) process layout with large scales manufacturing. 4) job shops. The PPC in a make-to-order typically are organized along hierarchical fashions. A model is proposed for the hierarchical job shop scheduling based on new concepts of production system, work and worker organization. Then, a new integrated hierarchical framework is also developed for the PPC based on concepts of the proposed job shops scheduling model. Finally, the proposed framework has been implemented in the Electric Motor Manufacturing and the results showed good performance.

A Framework for Hierarchical Production Planning and Control in Make-to-Order Environment with Job Shop (Job Shop 형태를 갖는 주문생산 환경에서의 계층적 생산계획 및 통제 Framework의 설계)

  • 송정수;문치웅;김재균
    • Korean Management Science Review
    • /
    • v.16 no.2
    • /
    • pp.125-135
    • /
    • 1999
  • This paper presents a framework for the hierarchical PPC(Production Planning and Control) in make-to-order environment with job shop. The characteristics of the environment are described as : 1) project with non-repetitive and individual production, 2) short delivery date, 3) process layout with large scales manufacturing. 4) job shops. The PPC in a make-to-order typically are organized along hierarchical fashions. A model is proposed for the hierarchical job shop scheduling based on new concepts of production system, work and worker organization. Then, a new integrated hierarchical framework is also developed for the PPC based on concepts of the proposed job shops scheduling model. Finally, the proposed framework has been implemented in the Electric Motor Manufacturing and the results showed good performance.

  • PDF

Hierarchical Resource Management Framework and Multi-hop Task Scheduling Decision for Resource-Constrained VEC Networks

  • Hu, Xi;Zhao, Yicheng;Huang, Yang;Zhu, Chen;Yao, Jun;Fang, Nana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3638-3657
    • /
    • 2022
  • In urban vehicular edge computing (VEC) environments, one edge server always serves many task requests in its coverage which results in the resource-constrained problem. To resolve the problem and improve system utilization, we first design a general hierarchical resource management framework based on typical VEC network structures. Following the framework, a specific interacting protocol is also designed for our decision algorithm. Secondly, a greedy bidding-based multi-hop task scheduling decision algorithm is proposed to realize effective task scheduling in resource-constrained VEC environments. In this algorithm, the goal of maximizing system utility is modeled as an optimization problem with the constraints of task deadlines and available computing resources. Then, an auction mechanism named greedy bidding is used to match task requests to edge servers in the case of multiple hops to maximize the system utility. Simulation results show that our proposal can maximize the number of tasks served in resource constrained VEC networks and improve the system utility.

A Framework Using UPPAAL to Verify Schedulability of Hierarchical Scheduling Systems (계층적 실시간 시스템 스케줄링 검증을 위한 정형적 프레임워크)

  • Ahn, So Jin;Hwang, Dae Yon;Choi, Jin Young
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.9
    • /
    • pp.604-609
    • /
    • 2015
  • The use of Operating System(OS) virtualization is increasing as it provides many useful features such as efficient use of hardware(HW), easy system migration, and isolation between virtual spaces which prevents errors effecting each other. Recent development in HW has made it possible to use OS virtualization in embedded systems. However, implementing OS virtualization means that a multiple number of schedulers are layered in a system, rendering it difficult to analyze the schedulability of the system and errors are easily produced. Errors in safety critical embedded systems can cause serious damage to life and property; thus, the hierarchical schedulability must be verified. In this paper, we propose a framework which supports formal modeling and verification of hierarchical scheduling systems with UPPAAL.

Modeling and Intelligent Scheduling for FMC (FMC의 모델링과 지능형 스케쥴링)

  • 서기성;이노성;안인석;우승규;이규호;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.3
    • /
    • pp.31-40
    • /
    • 1993
  • This paper deals with the modeling and scheduling for FMC(Flexible Manufacturing Cells). The FMC system composed of unit or multi cells is capable of improving productivity with flexibility for machine. However, the properties of multiple jobs and various alternatives results in tne dynamic states which make system management very complex. The extended Peti nets are used to represent for complex properties of FMC which performs short-term scheduling and dynamic operational scheduling. The hierarchical control structure and integlligent scheduling through expert module are adopted for efficiency of FMC operations. The computer simulation reveals that intelligent scheduling method is better than heuristics in various performance indices.

  • PDF

Development of an integrated decision support system for FMS production planning and scheduling problems (FMS의 생산계획 및 일정계획을 위한 의사결정을 위한 의사결정 지원시스템의 개발)

  • 장성용;장병만;박진우
    • Korean Management Science Review
    • /
    • v.8 no.1
    • /
    • pp.51-70
    • /
    • 1991
  • This paper discusses planning and scheduling problems for efficient utilization of an FMS and presents an integrated decision support system for FMS production planning and scheduling problems. The decision support system, FMSDS(Flexible Manufacturing Systems Decision Support System), includes of data of handling module, part selection module, loading module, load adjusting module, scheduling module and simulation module etc. This paper includes the solution methodology of each subproblem. And an integrated interface scheme between the subproblems is presented. The interface scheme considers the relationships between the subproblems and generates solution using hierarchical and looping approaches. FMSDS is made up of six alternative models considering 3 loading objectives and 2 production order processing strategies. Performance comparisons among 6 alternatives and other decision support systems are shown using the non-terminating simulation techniques.

  • PDF

Reconfigurable SoC Design with Hierarchical FSM and Synchronous Dataflow Model (Hierarchical FSM과 Synchronous Dataflow Model을 이용한 재구성 가능한 SoC의 설계)

  • 이성현;유승주;최기영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.619-630
    • /
    • 2003
  • We present a method of runtime configuration scheduling in reconfigurable SoC design. As a model of computation, we use a popular formal model of computation, hierarchical FSM (HFSM) with synchronous dataflow (SDF) model, in short, HFSM-SDF model. In reconfigurable SoC design with HFSM-SDF model, the problem of configuration scheduling becomes challenging due to the dynamic behavior of the system such as concurrent execution of state transitions (by AND relation), complex control flow (HFSM), and complex schedules of SDF actor firing. This makes it hard to hide configuration latency efficiently with compile-time static configuration scheduling. To resolve the problem, it is necessary to know the exact order of required configurations during runtime and to perform runtime configuration scheduling. To obtain the exact order of configurations, we exploit the inherent property of HFSM-SDF that the execution order of SDF actors can be determined before executing the state transition of top FSM. After obtaining the order information and storing it in the ready configuration queue (ready CQ), we execute the state transition. During the execution, whenever there is FPGA resource available, a new configuration is selected from the ready CQ and fetched by the runtime configuration scheduler. We applied the method to an MPEG4 decoder and IS95 design and obtained up to 21.8% improvement in system runtime with a negligible overhead of memory usage.

A Reconfigurable Scheduler Model for Supporting Various Real-Time Scheduling Algorithms (다양한 실시간 스케줄링 알고리즘들을 지원하기 위한 재구성 가능한 스케줄러 모델)

  • Shim, Jae-Hong;Song, Jae-Shin;Choi, Kyung-Hee;Park, Seung-Kyu;Jung, Gi-Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.4
    • /
    • pp.201-212
    • /
    • 2002
  • This paper proposes a reconfigurable scheduler model that can support various real-time scheduling algorithms. The proposed model consists of two hierarchical upper and lower components, task scheduler and scheduling framework, respectively. The scheduling framework provides a job dispatcher and software timers. The task scheduler implements an appropriate scheduling algorithm, which supports a specific real-time application, based on the scheduling framework. If system developers observe internal kernel interfaces to communicate between two hierarchical components, they can implement a new scheduling algorithm independent of complex low kernel mechanism. Once a task scheduler is developed, it can be reused in a new real-time system in future. In Real-Time Linux (5), we implemented the proposed scheduling framework and several representative real-time scheduling algorithms. Throughout these implementations, we confirmed that a new scheduling algorithm could be developed independently without updates of complex low kernel modules. In order to confirm efficiency of the proposed model, we measured the performance of representative task schedulers. The results showed that the scheduling overhead of proposed model, which has two separated components, is similar to that of a classic monolithic kernel scheduler.

The Integration of FMS Process Planning and Scheduling Using an Asymmetric Multileveled Symbiotic Evolutionary Algorithm (비대칭형 다계층 공생 진화알고리듬을 이용한 FMS 공정계획과 일정계획의 통합)

  • Kim, Yeo Keun;Kim, Jae Yun;Shin, Kyoung Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.2
    • /
    • pp.130-145
    • /
    • 2004
  • This paper addresses the integrated problem of process planning and scheduling in FMS (Flexible Manufacturing System). The integration of process planning and scheduling is important for an efficient utilization of manufacturing resources. In this paper, a new method using an artificial intelligent search technique, called asymmetric multileveled symbiotic evolutionary algorithm, is presented to handle the two functions at the same time. Efficient genetic representations and operator schemes are considered. While designing the schemes, we take into account the features specific to each of process planning and scheduling problems. The performance of the proposed algorithm is compared with those of a traditional hierarchical approach and existing evolutionary algorithms. The experimental results show that the proposed algorithm outperforms the compared algorithms.