• Title/Summary/Keyword: hierarchical control

Search Result 820, Processing Time 0.028 seconds

Effects of Maternal Behaviors and Children's Self-Control Ability on Their Subjective Well-Being (모 양육태도 지각과 자기조절능력이 아동의 주관적 안녕감에 미치는 영향)

  • Kim, Yeong-Seon;Lee, Sook
    • The Korean Journal of Community Living Science
    • /
    • v.25 no.2
    • /
    • pp.131-145
    • /
    • 2014
  • This study examines the effects of maternal behaviors and children's self-control ability on their subjective well-being. Data were collected from 416 fifth- and sixth-graders residing in Kwangju, Korea. Cronbach's ${\alpha}$ and the hierarchical regression analysis method were employed for a statistical analysis. According to the results of the hierarchical multiple regression analysis, children's self-control ability best explained their subjective well-being. For individual factors, motivational self-control had the greatest effect on subjective well-being, followed by behavioral self-control, cognitive self-control, the level of income, gender, and the employment status, in that order. The results for effects of maternal behaviors and children's self-control ability on children's subjective well-being highlight. The important roles played by the mother and the child's self-control ability in improving the child's subjective well-being. The study contributes to the literature by providing fundamental insights into children's higher quality of life.

Development and Installation of Voltage Management System for Voltage and Reactive Power Control of Wide Area System (광역계통 전압/무효전력 관리를 위한 전압관리시스템의 개발 및 현장설치)

  • Nam, Su-Chul;Shin, Jeong-Hoon;Baek, Seung-Mook;Lee, Jae-Gul;Moon, Seung-Pil;Kim, Tae-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1540-1548
    • /
    • 2010
  • KEPCO proposes enhanced voltage management system that is a coordinate voltage control system between the hierarchical voltage control system and the slow voltage control system. It has been installing in Jeju island. VMS consists of a master controller, CVC (Continuous Voltage Controller) and DVC (Discrete Voltage Controller). CVC consists of main controller, FDMU (Field Data Measurement Unit) and several RPDs (Reactive Power Dispatcher). CVC has a control scheme with AVRs of generator to maintain the voltage of a pilot bus in a power system, DVC has a control scheme with static reactive power sources, like a shunt capacitor, a shunt reactor, ULTC and so on, to maintain the reactive power reserve of a power system and a master controller is executed to recover reactive power margin of a power system through coordinated control between CVC and DVC.

Design of a Cooperative Voltage Control System Between EMS (VMS) and DMS

  • Shin, Jeonghoon;Lee, Jaegul;Nam, Suchul;Song, Jiyoung;Oh, Seungchan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.279-284
    • /
    • 2020
  • This paper presents the conceptual design of a cooperative control with Energy Management System (EMS) and Distribution Management System (DMS). This control enables insufficient reactive power reserve in a power transmission system to be supplemented by surplus reactive power in a power distribution system on the basis of the amount of the needed reactive power reserve calculated by the EMS. This can be achieved, because increased numbers of microgrids with distributed energy resources will be installed in the distribution system. Furthermore, the DMS with smart control strategy by using surplus reactive power in the distribution system of the area has been gradually installed in the system as well. Therefore, a kind of hierarchical voltage control and cooperative control scheme could be considered for the effective use of energy resources. A quantitative index to evaluate the current reactive power reserve of the transmission system is also required. In the paper, the algorithm for the whole cooperative control system, including Area-Q Indicator (AQI) as the index for the current reactive power reserve of a voltage control area, is devised and presented. Finally, the performance of the proposed system is proven by several simulation studies.

Chopper Controller Based DC Voltage Control Strategy for Cascaded Multilevel STATCOM

  • Xiong, Lian-Song;Zhuo, Fang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.576-588
    • /
    • 2014
  • The superiority of CMI (Cascaded Multilevel Inverter) is unparalleled in high power and high voltage STATCOM (Static Synchronous Compensator). However, the parameters and operating conditions of each individual power unit composing the cascaded STATCOM differ from unit to unit, causing unit voltage disequilibrium on the DC side. This phenomenon seriously impairs the operation performance of STATCOM, and thus maintaining the DC voltage balance and stability becomes critical for cascaded STATCOM. This paper analyzes the case of voltage disequilibrium, combines the operation characteristics of the cascaded STATCOM, and proposes a new DC voltage control scheme with the advantages of good control performance and stability. This hierarchical control method uses software to achieve the total active power control and also uses chopper controllers to enable that the imbalance power can flow among the capacitors in order to keep DC capacitor voltages balance. The operating principle of the chopper controllers is analyzed and the implementation is presented. The major advantages of the proposed control strategy are that the number of PI regulators has been decreased remarkably and accordingly the blindness of system design and debugging also reduces obviously. The simulation reveals that the proposed control scheme can achieve the satisfactory control goals.

A Study to Hierarchical Visualization of Firewall Access Control Policies (방화벽 접근정책의 계층적 가시화 방법에 대한 연구)

  • Kim, Tae-yong;Kwon, Tae-woong;Lee, Jun;Lee, Youn-su;Song, Jung-suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1087-1101
    • /
    • 2020
  • Various security devices are used to protect internal networks and valuable information from rapidly evolving cyber attacks. Firewall, which is the most commonly used security device, tries to prevent malicious attacks based on a text-based filtering rule (i.e., access control policy), by allowing or blocking access to communicate between inside and outside environments. However, in order to protect a valuable internal network from large networks, it has no choice but to increase the number of access control policy. Moreover, the text-based policy requires time-consuming and labor cost to analyze various types of vulnerabilities in firewall. To solve these problems, this paper proposes a 3D-based hierarchical visualization method, for intuitive analysis and management of access control policy. In particular, by providing a drill-down user interface through hierarchical architecture, Can support the access policy analysis for not only comprehensive understanding of large-scale networks, but also sophisticated investigation of anomalies. Finally, we implement the proposed system architecture's to verify the practicality and validity of the hierarchical visualization methodology, and then attempt to identify the applicability of firewall data analysis in the real-world network environment.

Multilevel Editing for Hierarchical B-spline Curves using Rotation Minimizing Frames (RMF을 이용한 계층적 B-spline 곡선의 다단계 편집기법)

  • Zhang, Ci;Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.41-50
    • /
    • 2010
  • We present a new technique for multilevel editing of hierarchical B-spline curves. At each level, control points of a displacement function are expressed in the rotation minimizing frames (RMFs) [1] which are computed on nodal points of the curve at previous level. When the curve is edited at previous level, the corresponding RMFs are updated and the control points of the displacement function at current level are applied to the new RMFs, which maintains the relative details of the curve at current level to those of previous level. We demonstrate the effectiveness and robustness of the proposed technique using several experimental results.

A Hierarchical Model Predictive Voltage Control for NPC/H-Bridge Converters with a Reduced Computational Burden

  • Gong, Zheng;Dai, Peng;Wu, Xiaojie;Deng, Fujin;Liu, Dong;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.136-148
    • /
    • 2017
  • In recent years, voltage source multilevel converters are very popular in medium/high-voltage industrial applications, among which the NPC/H-Bridge converter is a popular solution to the medium/high-voltage drive systems. The conventional finite control set model predictive control (FCS-MPC) strategy is not practical for multilevel converters due to their substantial calculation requirements, especially under high number of voltage levels. To solve this problem, a hierarchical model predictive voltage control (HMPVC) strategy with referring to the implementation of g-h coordinate space vector modulation (SVM) is proposed. By the hierarchical structure of different cost functions, load currents can be controlled well and common mode voltage can be maintained at low values. The proposed strategy could be easily expanded to the systems with high number of voltage levels while the amount of required calculation is significantly reduced and the advantages of the conventional FCS-MPC strategy are reserved. In addition, a HMPVC-based field oriented control scheme is applied to a drive system with the NPC/H-Bridge converter. Both steady-state and transient performances are evaluated by simulations and experiments with a down-scaled NPC/H-Bridge converter prototype under various conditions, which validate the proposed HMPVC strategy.

Access Control of XML Object Using Role Hierarchy and Cryptographic Key Assignment Scheme (역할 계층과 암호학적인 키 할당 기법을 이용한 XML 객체의 접근제어)

  • Bae Kyoung-Man;Kim Jong-Hoon;Ban Yong-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.93-103
    • /
    • 2005
  • As the usage of XML documents increases the requirement of security for XML documents is growing. Especially it is very important to solve the problem of access control to XML object which shares in the environment where various users connect to each others. In this paper, we propose the access control model and mechanism which is combined with role hierarchy in the RBAC and hierarchical key derivation/assign method for the access to XML object. So we implement the access control mechanism by including hierarchical key derivation method. The technique, we proposed, gives not only the benefit in management which RBAC provides in access control to XML objects, but also it ran help derive a lower layer key from the higher layer user's. This feature decrease the number of keys managed in each role hierarchy in comparison with previous methods.

Stability Analysis of Multi-motor Controller based on Hierarchical Network (계층적 네트워크 기반 다중 모터 제어기의 안정도 분석)

  • Chanwoo Moon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.677-682
    • /
    • 2023
  • A large number of motors and sensors are used to drive a humanoid robot. In order to solve the wiring problem that occurs when connecting multiple actuators, a controller based on a communication network has been used, and CAN, which is advantageous in terms of cost and a highly reliable communication protocol, was mainly used. In terms of the structure of the controller, a torque control type structure that is easy to implement an advanced algorithm into the upper controller is preferred. In this case, the low communication bandwidth of CAN becomes a problem, and in order to obtain sufficient communication bandwidth, a communication network is configured by separating into a plurality of CAN networks. In this study, a stability analysis on transmission time delay is performed for a multi-motor control system in which high-speed FlexRay and low-speed CAN communication networks are hierarchically connected in order to obtain a high communication bandwidth, and sensor information and driving signals are delivered within the allowed transmission time. The proposed hierarchical network-based control system is expected to improve control performance because it can implement multiple motor control systems with a single network.

The Effects of General Characteristics, Maternal Parenting Behaviors and Children's Self-Control Ability on the Social Competence of Children (아동의 사회인구학적 변인과 어머니의 양육태도 및 아동의 자기조절능력이 사회적 유능성에 미치는 영향)

  • Kim, Yeong Seon;Lee, Sook
    • Korean Journal of Child Studies
    • /
    • v.36 no.1
    • /
    • pp.163-185
    • /
    • 2015
  • This study examined the influences of general characteristics, maternal parenting behaviors and children's self-control ability on children's social competence. A total of 416 children in the fifth and sixth grades responded to questionnaires, which included items related to their social competence, their mothers' parenting behavior, as well as their own self-control ability. Data were analyzed by means of Pearson correlation analysis and the hierarchical regression analysis method. According to the results of the hierarchical multiple regression analysis, children's self-control ability best explained their social competence. In terms of individual factors, motivational self-control had the greatest effect on social competence, followed by cognitive self-regulation, behavioral self-regulation, economic level, gender and grades, in that order. The results for the effects of maternal parenting behaviors and children's self-control ability on children's social competence highlighted the important roles played by the mother and the child's self-control ability in improving the child's social competence. The study contributes to the literature by providing fundamental insights into children's higher quality of life.