• 제목/요약/키워드: hierarchical Taxonomy

검색결과 31건 처리시간 0.031초

Effective and Efficient Similarity Measures for Purchase Histories Considering Product Taxonomy

  • Yang, Yu-Jeong;Lee, Ki Yong
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.107-123
    • /
    • 2021
  • In an online shopping site or offline store, products purchased by each customer over time form the purchase history of the customer. Also, in most retailers, products have a product taxonomy, which represents a hierarchical classification of products. Considering the product taxonomy, the lower the level of the category to which two products both belong, the more similar the two products. However, there has been little work on similarity measures for sequences considering a hierarchical classification of elements. In this paper, we propose new similarity measures for purchase histories considering not only the purchase order of products but also the hierarchical classification of products. Unlike the existing methods, where the similarity between two elements in sequences is only 0 or 1 depending on whether two elements are the same or not, the proposed method can assign any real number between 0 and 1 considering the hierarchical classification of elements. We apply this idea to extend three existing representative similarity measures for sequences. We also propose an efficient computation method for the proposed similarity measures. Through various experiments, we show that the proposed method can measure the similarity between purchase histories very effectively and efficiently.

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

연구실 사고분류 체계 개발 (Development of Accident Taxonomy for Experimental Laboratory)

  • 박교식
    • 한국안전학회지
    • /
    • 제31권5호
    • /
    • pp.49-53
    • /
    • 2016
  • The goal of this study is to analyze accidents occurred at experimental laboratory and to suggest hierarchical taxonomy applicable to prepare countermeasures reducing the experimental laboratory accidents. Recent 5 years accidents were analyzed and classified according to their primary cause, facility or human. Then in case of facility, the accidents were further classified whether they can be fixed by organization or by individual. In case of human factor, they were classified into physical, chemical, or biological to prepare precise measures. Depending on the adequacy of appropriate practice, several measures were suggested such as; whether to improve training of laboratory workers, or to improve training the system, or to improve or prepare practice substantially. A new taxonomy for laboratory accident was suggested complying other governmental agencies' classification such as KOSHA and KGS. Additionally, two kinds of possibilities were suggested such as possibility of major accident and possibility of disaster which can be defined as laboratory accident causing large scale of harmful consequence to residential area or environment by fire, explosion and/or toxic release of hazardous chemicals and/or microbiology.

정보기술구조유형이 경영성과에 미치는 영향 - 조직구조와 통제시스템의 조절효과를 중심으로 - (Influences of Information Technology Structure Taxonomy on Business Performance - Moderating Effect of Organization Structure and Control System -)

  • 김문식
    • Asia pacific journal of information systems
    • /
    • 제9권1호
    • /
    • pp.17-38
    • /
    • 1999
  • While the value of information technology has long been a hot issue, few solid results have been found as of yet. It is partly due to methodological factors and model underspecifcation. This study empirically develops a ITS(information technology structure) taxonomy and investigates the relationships between ITS taxonomy and business performance in the Korean firms. Among factors that impact business performance, organization structure and control system are selected and they are hypothesized to moderate-the relationships between ITS taxonomy and business performance. By surveying 91 manufacturing firms and applying hierarchical cluster analysis, four ITS are identified : centralized, decentralized, centralized cooperative, decentralized cooperative. ANOVA, correlation analysis and crosstable analysis say the presence of moderating effect of organization structure and control system. Cooperative ITS is best in business performance. Centralized ITS is related to functional organizational form. Decentralized ITS is related to product organizational form with decentralized decision making, Centralized cooperative ITS is related to matrix organizational form. Decentralized cooperative ITS is related to matrix organizational form with high integration. These findings have implications for the opportunities and challenges to match information technology with organization structure and control system.

  • PDF

자동차부품 추천을 위한 태스크 온톨로지 기술의 적용방법 (Application Method of Task Ontology Technology for Recommendation of Automobile Parts)

  • 김귀정;한정수
    • 디지털융복합연구
    • /
    • 제10권6호
    • /
    • pp.275-281
    • /
    • 2012
  • 본 연구는 태스크 온톨로지를 이용한 자동차부품 추천시스템 개발 방법을 제안하였다. 제안한 지능형 추천 시스템은 자동차 부품 조립과정을 학습하도록 하였으며, 자동차부품 추천을 위하여 부품들을 온톨로지 방법으로 구축하였다. is-a Relationship 기반 hierarchical Taxonomy를 이용하여 자동차 엔진을 구성하고 있는 각각의 부품들 사이의 관계를 설정하였다. 각각의 부품은 자동차 전문가의 지식에 의해 각기 다른 가중치 값을 가지고 있게 된다. 가중치는 자동차 추천시스템의 사용자들이 직접 사용하면서 선택한 횟수와 가중치의 곱 연산을 이용한 결과 값을 시스템 내에서 기록하여 순서를 작성하고 결과적으로 우선순위(priority)가 높은 순서부터 사용자에게 출력함으로써 어느 부품의 어느 요소가 중요한지 쉽게 파악할 수 있도록 하였다. 자동차부품 지능형 추천시스템은 사용자가 쉽게 접근하기 어려운 자동차 부품관련 부분을 생성된 데이터를 바탕으로 임의의 부품을 선택했을 때 해당 부품과 밀접한 관계를 가진 부품을 표현하여 특별히 전문적인 지식 없이도 손쉽게 자동차 부품의 조립 및 쓰임새와 중요성을 알 수 있게 해주는 시스템이다.

계층적 분류체계를 지원하는 규칙기반 추론엔진 (A Rule-based Reasoning Engine supporting Hierarchical Taxonomy)

  • 김태현;김재호;원광호;이기혁;손기락
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.148-154
    • /
    • 2008
  • 미래 유비쿼터스 컴퓨팅은 언제 어디서나 지능형 모바일 단말들이 자율적으로 서비스를 제공받을 수 있는 유비쿼터스 지능 공간을 필요로 한다. 이러한 지능 공간의 자율적 구성을 위해 지능 공간에 속한 각 모바일 단말들은 다양한 소스로부터 컨텍스트(Conte박 상황) 정보를 수집하고 컨텍스트 정보로부터 유용한 정보를 추론할 수 있어야 한다. 특히 다양한 유비쿼터스 지능 공간으로부터 수집하고 컨텍스트 정보의 모호성을 극복하고 보다 정확한 상황 인지를 통한 지능형 서비스를 제공하기 위해서는 컨텍스트에 대한 표준 분류 기법(taxonomy) 및 분류된 컨텍스트 정보를 기반으로 하는 추론 기술이 요구된다. 이를 위해 기존의 유비쿼터스 지능 공간에 관련된 대부분의 기존의 연구들에서는 상황 인지 서비스 제공을 위해 CLIPS나 JESS와 같은 규칙 기반 추론 엔진이 주로 사용되고 있다. 그러나 기존의 추론 엔진들은 리소스가 제한된 모바일 단말에서 사용되기에는 한계를 가지고 있다. 따라서 본 논문에서는 모바일 단말을 위한 자율적인 상황인지 서비스를 제공하기 위한 경량 추론 엔진을 설계하고 구현하는 것을 목적으로 한다. 개발된 추론 엔진은 휴대폰이나 PMP, 네비게이션 둥과 같은 개인형 모바일 단말에서 자율적인 상황인지 기반 서비스를 제공하기 위해 사용될 수 있다. 또한, 계층적 분류체계(taxonomy) 정보를 활용함으로써 일반적인 룰(general rule) 또는 구체적인 룰(specific rule)의 선택적인 구성을 통해 다양한 수준의 컨텍스트가 실시간으로 수집되는 상황인지 컴퓨팅에서의 효율적인 상황인지 서비스의 구현을 지원한다.

음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘 (New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification)

  • 최택성;문선국;박영철;윤대희;이석필
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.111-118
    • /
    • 2008
  • 본 논문에서는 음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘을 제안한다. 제안된 알고리즘은 모든 가능한 노드들의 분류 확률을 예측하여 예측된 분류 성능값이 가장 좋은 조합을 Taxonomy로 구축하는 것이다. 제안된 알고리즘에서의 분류 확률 예측은 훈련 데이터를 k-fold cross validation을 이용하여 분류기에 적용함으로써 이루어진다. 제안된 알고리즘을 기반으로 한 분류 성능 측정은 2 클래스로 이루어진 각각의 노드에 2개 범주 분류에 효과적인 support vector machine을 적용함으로써 이루어진다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 알고리즘과 기존의 다중 범주 분류기들을 이용하여 분류성능을 평가하였다. 다양한 실험결과 제안된 알고리즘은 기존의 알고리즘에 비하여 5%에서 25%정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터를 이용한 분류 실험에서는 10% 에서 25% 향상된 좋은 성능을 보였다.

범주별 태그 안정성을 이용한 태그 부착 자원의 SVM 기반 분류 기법 (A SVM-based Method for Classifying Tagged Web Resources using Tag Stability of Folksonomy in Categories)

  • 고병걸;이강표;김형주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권6호
    • /
    • pp.414-423
    • /
    • 2009
  • 폭소노미(Folksonomy)는 자유롭게 선택된 키워드의 집합인 태그를 이용하여 이루어지는 협업적 분류로서 웹 2.0의 대표 요소이다. 폭소노미는 기존 분류 방법인 택소노미(Taxonomy)에 비해 적은 비용으로 구축할 수 있다는 장점이 있으나 택소노미에 비해 계층적, 체계적 구조가 부족하다는 단점을 가지고 있다. 이에 폭소노미에 존재하는 집단 지성을 학습하여 웹 자원을 분류할 수 있는 분류기를 구축할 수 있다면 기존 방법인 택소노미를 적은 비용으로 구축할 수 있을 것이다. 본 논문에서는 Slashdot.org에 구축되어 있는 폭소노미를 대상으로 일반적 모델을 정의하고 이 안에서 안정성이 존재함을 보임으로써 분류기를 생성할 수 있는 집단 지성이 폭소노미에 실제로 존재함을 보인다. 그리고 이 집단 지성으로부터 형성되는 범주 별 태그의 특징인 안정성 값을 이용하여 SVM으로 분류기를 구축하는 방법을 제안한다. 실제로 우리가 제안하는 방법으로 폭소노미로부터 높은 정확도로 택소노미를 구축하였음을 실험을 통해 확인하였다.

지식 표현 기법을 이용한 모델 구조의 표현과 구성 : 단편구조 유연생산 시스템 예 (Model Structuring Technique by A Knowledge Representation Scheme: A FMS Fractal Architecture Example)

  • 조대호
    • 한국시뮬레이션학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-11
    • /
    • 1995
  • The model of a FMS (Flexible Manufacturing System) admits to a natural hierarchical decomposition of highly decoupled units with similar structure and control. The FMS fractal architecture model represents a hierarchical structure built from elements of a single basic design. A SES (System Entity Structure) is a structural knowledge representation scheme that contains knowledge of decomposition, taxonomy, and coupling relationships of a system necessary to direct model synthesis. A substructure of a SES is extracted for use as the skeleton for a model. This substructure is called pruned SES and the extraction operation of a pruned SES from a SES is called pruning (or pruning operation). This paper presents a pruning operation called recursive pruning. It is applied to SES for generating a model structure whose sub-structure contains copies if itself as in FMS fractal architecture. Another pruning operation called delay pruning is also presented. Combined with recursive pruning the delay pruningis a useful tool for representing and constructing complex systems.

  • PDF

Understanding Statistical Terms: A Study with Secondary School and University Students

  • Garcia Alonso, Israel;Garcia Cruz, Juan Antonio
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제14권2호
    • /
    • pp.143-172
    • /
    • 2010
  • In this paper, we present an analysis of how students understand some statistical terms, mainly from inferential statistics, which are taught at the high school level. We focus our analysis on those terms that present more difficulties and are persistent in spite of having been studied until the college level. This analysis leads us to a hierarchical classification of responses at different levels of understanding using the SOLO theoretical framework.