• Title/Summary/Keyword: heterotrophic growth

Search Result 99, Processing Time 0.025 seconds

Initial Change of Environmental factors at Artificial Tidal Flat Constructed Using Ocean Dredged Sediment (해양 준설토를 이용한 인공염습지 현장시험구 조성 후 초기 환경변화)

  • Park, So-Young;Lee, In-Cheol;Yi, Byung-Ho;Lee, Ja-Yeon;Yi, Yong-Min;Sung, Ki-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • As a basic study on the creation of artificial tidal flats using dredged sediments, the pilot-scale artificial tidal flats with 4 different mixing ratio of ocean dredged sediment were constructed in Nakdong river estuary. The phragmites australis was transplanted from the adjacent phragmites australis community after construction, and then the survival and growth rate of the planted phragmites australis were measured. Also the changes of soil chemical oxygen demand (COD), ignition loss (IL), and the heterotrophic microbial numbers were monitored. The survival rate of the planted phragmites australis decreased as the mixing ratio of dredged sediment increased but there was little difference of length and diameter of the shoots. 30% of COD and 9% of IL in the tidal flat with 100% dredged sediment decreased after 202 day, however, fluctuations of COD and IL concentrations were also observed possibly due to the open system. It was suggested that the construction of tidal flats using ocean dredged sediment and biological remediation of contaminated ocean dredged sediment can be possible considering the growth rate of transplanted phragmites australis, decrease of organic matter and increased heterotrophic microbial number in the pilot plant with 100% dredged sediment. However, the continuous monitoring on the vegetation and various environmental factors in the artificial tidal flat should be necessary to evaluate the success of creation of artificial flats using dredged sediments.

  • PDF

The Photoautotrophic Culture System Promotes Photosynthesis and Growth of Somatic Embryo-derived Plantlets of Kalopanax septemlobus (독립영양방식 액체대량배양 시스템하에서 배양한 체세포배 유래 음나무 기내묘의 생장과 광합성)

  • Park, So-Young;Moon, Heung-Kyu;Kim, Yong-Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.212-217
    • /
    • 2011
  • A photoautotrophic micropropagation methodology in liquid culture medium has a number of advantages for large-scale propagation of plants. This paper describes an improved system for the mass propagation via somatic embryogenesis of the medicinal plant Kalopanax septemlobus Nakai. Somatic embryo-derived young plantlets of K. septemlobus were cultured either under heterotrophic conditions with sucrose on half-strength MS medium with $30gL^{-1}$ sucrose, under heterotrophic conditions without sucrose, or under photoautotrophic conditions (MS liquid medium without sucrose under forced aeration) for four weeks before transferring the plantlets for acclimatization. Plantlets grown under photoautotrophic conditions had more leaves, higher chlorophyll content, a higher net photosynthetic rate (NPR), and a higher survival rate. The results indicate that the photoautotrophic conditions with a forced ventilation system are effective in enhancing the growth of plantlets and the rate of net photosynthesis. The plantlets grown under photoautotrophic conditions had a high survival rate (92%) upon ex vitro transplantation. Our study shows that autotrophically produced plantlets acclimatize better and sooner upon ex vitro transplantation than conventionally cultured plants.

Growth kinetics and chlorine resistance of heterotrophic bacteria isolated from young biofilms formed on a model drinking water distribution system (모델 상수관망에 형성된 초기 생물막에서 분리한 종속영양세균의 생장 동역학 및 염소 내성)

  • Park, Se-Keun;Kim, Yeong-Kwan;Oh, Young-Sook;Choi, Sung-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.355-363
    • /
    • 2015
  • The present work quantified the growth of young biofilm in a model distribution system that was fed with chlorinated drinking water at a hydraulic retention time of 2 h. Bacterial biofilms grew on the surface of polyvinyl chloride (PVC) slides at a specific growth rate of $0.14{\pm}0.09day^{-1}$ for total bacteria and $0.16{\pm}0.08day^{-1}$ for heterotrophic bacteria, reaching $3.1{\times}10^4cells/cm^2$ and $6.6{\times}10^3CFU/cm^2$ after 10 days, respectively. The specific growth rates of biofilm-forming bacteria were found to be much higher than those of bulk-phase bacteria, suggesting that biofilm bacteria account for a major part of the bacterial production in this model system. Biofilm isolates exhibited characteristic kinetic properties, as determined by ${\mu}_{max}$ and $K_S$ values using the Monod model, in a defined growth medium containing various amounts of acetate. The lowest ${\mu}_{max}$ value was observed in bacterial species belonging to the genus Methylobacterium, and their slow growth seemed to confer high resistance to chlorine treatment (0.5 mg/L for 10 min). $K_S$ values (inversely related to substrate affinity) of Sphingomonas were two orders of magnitude lower for acetate carbon than those of other isolates. The Sphingomonas isolates may have obligate-oligotrophic characteristics, since the lower $K_S$ values allow them to thrive under nutrient-deficient conditions. These results provide a better understanding and control of multi-species bacterial biofilms that develop within days in a drinking water distribution system.

Effects of Nonylphenol on the Population Growth of Algae, Heterotrophic Nanoflagellate and Zooplankton (내분비장애물질 Nonylphenol이 미세조류, 종속영양편모충, 동물플랑크톤의 개체군 성장에 미치는 영향)

  • Lee, Ju-Han;Lee, Hae-Ok;Kim, Baik-Ho;Katano, Toshiya;Hwang, Su-Ok;Kim, Dae-Hyun;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.3
    • /
    • pp.379-386
    • /
    • 2007
  • Nonylphenol (NP) has been well known as a major substance of surfactant and/or estrogenic environmental hormone. We tested toxic effects of nonylphenol on the population growth and development of aquatic organism such as algae (Microcystis aeruginosa), heterotrophic nanoflagellate (Diphylleia rotans), micro- (Brachionus calyciflorus) and macro-zooplankton (Daphnia magna) among eutrophic water food-web constituents. Dosage of NP treatment were 4 to 5 grades, according to each organism's tolerance based on pre-experiments; algae (0.01, 0.05, 0.10, 1.00 mg $L^{-1}$) Diphylleia rotans (0.5, 1,2. 5,6, 10 ${\mu}g\;L^{-1})$, Brachionus calyciflorus (0.1, 0.5, 1, 2.5, 5 ${\mu}g\;L^{-1}$), and Daphnia magna (0.5, 1, 5, 10, 50 ${\mu}g\;L^{-1}$), respectively. Toxic effects were measured by the changes of biomass of each organism after NP treatment. All experiments were triplication. As suggested, the higher concentration of NP treatment, the stronger inhibited the population growth of all organisms tested. In view of toxicity, a variety of concentration of NP showed a significant growth inhibition to organism; algae to 0.05 $mg\;L^{-1}$, D. rotans and B. calyciflorus to 1.0 ${\mu}g\;L^{-1}$, and D. magna to 5.0 ${\mu}g\;L^{-1}$, respectively. The $EC_{50}$ of each organism to the nonylphenol are as follows; 3. calyciflorus (2.49 ${\mu}g\;L^{-1}$), D. rotans (3.49 ${\mu}g\;L^{-1}$), D. magna (7.61 ${\mu}g\;L^{-1})$, and M. aeruginosa (47 ${\mu}g\;L^{-1})$. NP toxic effects on the development of zooplankton like egg production showed some differences in treatment concentration between Brachionus calyciflorus ${0.1{\sim}1NP{\mu}g\;L^{-1})$ and Daphnia magna $(0.5{\sim}5NP\;{\mu}g\;L^{-1})$. These results suggest that a strong growth inhibition of predator or grazer by the nonylphenol can stimulate the algal growth, or can play important role in evoking the nuisance algal bloom in eutrophic water with enough nutrients.

Mass Cultivation and Secondary Metabolite Analysis of Rhodobacter capsulatus PS-2 (광합성세균 Rhodobater capsulatus PS-2의 대량배양 최적화 및 대사산물 분석)

  • Bong, Ki Moon;Kim, Jong Min;Yoo, Jae-Hong;Park, In Chul;Lee, Chul Won;Kim, Pyoung Il
    • KSBB Journal
    • /
    • v.31 no.3
    • /
    • pp.158-164
    • /
    • 2016
  • Plant growth promoting (PGP) hormones, which are produced in a small quantity by bacteria, affect in plant growth and development. PGPs play an important role on the crop productivity in agricultural field. In this study, a photosynthetic bacterial strain producing the PGP was isolated from paddy soil. Bacterial isolate was gram negative, rod-shaped and motility positive. From the 16s rRNA gene sequence analysis, the isolate was identified as Rhodobacter capsulatus PS-2. The mass cultivation of R. capsulatus PS-2 was optimized by considering of the carbon, nitrogen and inorganic salt sources. Optimal medium composition was determined as Na-succinate 4.5 g, yeast extract 5 g, $K_2HPO_4$ 1 g, $MgSO_4$ 5 g, per liter. From the result of 500 L fermentation for 2 days using the optimal medium, the viable cells were $8.7{\times}10^9cfu/mL$. R. capsulatus PS-2 strain produced the carotenoid and indole-3-acetic acid (IAA). The carotenoid extraction and quantitative analysis were performed by HCl-assisting method. Total carotenoid contents from R. capsulatus PS-2 culture broth were measured as $7.02{\pm}0.04$ and $6.93{\pm}0.05mg/L$ under photoheterotrophic and chemoheterotrophic conditions, respectively. To measure the productivity of IAA, colorimetric method was employed using Salkowski reagent at optical density 535 nm. The results showed that the highest content of IAA was $197.44{\pm}5.92mg/L$ in the optimal medium supplemented with 0.3% tryptophan.

Bacterial Die-Off in Continuous River Water Flow System

  • Kong, Surk-Key;Toshiuki Nakajima
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.847-852
    • /
    • 2003
  • It was examined carefully that the bacterial die-off between Chlorella vulgaris and E. coli. W3110 was tested through adding TOC (total organic carbon) with the lab-scaled continuous river water flow system (CRWFS). Artificial synthetic wastewater was applied at two levels of organic carbon concentration; 1,335 mg/l in treatment type 1 and 267 mg/l in type 2. In both types, the population densities of Chlorella vulgaris were similar in a maximum 8.25 ${\times}$ 10$\^$6/ cells/ml (type 1) and 6.925 ${\times}$ 10$\^$6/ cells/ml (type 2). The maximum densities of E. coli. W3110 were 2.0 ${\times}$ 10$\^$8/ colony forming unit (CFU)/ml in type 1 and 3.9 ${\times}$ 10$\^$8/ CFU/ml in type 2. The densities increased for 11 days in type 1 and 4 days in type 2, then decreased rapidly till the 35th day, then slightly increased again. This trend was prominent in type 2. It implied that a wider range of nutrients was required in the growth of heterotrophic bacteria in type 2 than in type 1. We could not expect successful bacterial die-off if the wastewater retention time was not furnished sufficiently.

Life Cycle of Heterotrophic Dinoflagellate Cryptoperidiniopsis brodyi (Dinophyceae) (Cryptoperidiniopsis brodyi (Dinophyceae)의 생활사)

  • Park, Tae-Gyu;Park, Young-Tae;Bae, Heon-Meen
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • Pfiesteriaand Pfiesteria-like organisms were reported to be linked to major fish kills(involving well over a billion fish) in North Carolina and Maryland estuaries on the U.S. east coast during the 1990s. Occurrences of these species have been recently reported from Korean waters including Chinhae Bay and the coast of Yeosu. In this study, the life cycle of Cryptoperidiniopsis brodyi and Pfiesteria piscicida were examined using DAPI staining. Their excystment and growth were stimulated directly by the addition of prey cells such as Rhodiminas salina. Amoeboid stages in C. brodyi and P. piscicida were never observed in culture, even after addition of filter-sterile fish mucus and tissue. The dominant life cycle stages consisted of motile flagellated zoospores and cysts. A typical dinoflagellate life cycle was demonstrated by direct observation and DAPI staining.

Activity of Chlorelaa vulgaris Associated by Escherichia coli W3110 on Removal of Total Organic Carbon in Continuous River Water Flow System

  • Kong, Surk-Key;Nakajima Toshiuki
    • ALGAE
    • /
    • v.17 no.3
    • /
    • pp.195-199
    • /
    • 2002
  • We investigated the association of Chlorella vulgaris and E. coli W9110 in removal of total organic carbon with the lab-scaled continuous river water flow system (CRWFS). Artificial wastewater was applied at two levels of organic carbon concentration; 1,335 $mg{\cdot}l^{-1}$ in the treatment (T)-1 and 267 $mg{\cdot}l^{-1}$ in T-2. The highest densities of C. vulgaris were $8.3{\times10^6\;cells{\cdot}ml^{-1}$ in T-1 and $6.9{\times}10^6\;cells{\cdot}ml^{-1}$ in T-2. The maximum densities of E. coli W3110 were $2.0{\times}10^8$ clony forming unit (CFU)${\cdot}ml^{-1}$ in T-1 and $3.9{\times}10^8\;CFU{\cdot}ml^{-1}$ in T-2. The densities increased during the first 11 days in T-q and 4 days in T-2, and decreased rapidly till 35th day, then increased slightly afterwards. This trend was prominent in T-2. It was inplied that wider range of nutrients was required in the growth of heterotrophic bacteria in T-2 than in T-1. The algal biomass should be increased effectively for the successful removal of organic carbon.

Global Increases in Dissolved Organic Carbon in Rivers and Their Implications

  • Kang, Ho-Jeong;Jang, In-Young;Freeman, Chris
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.453-458
    • /
    • 2010
  • DOC (Dissolved Organic Carbon) is an operational terminology for organic carbon molecules dissolved in natural waters. DOC has been studied by ecologists extensively, because it plays a key role in various ecological functions such as substrates for secondary production and the carbon cycle. DOC also represents a substrate for microbial growth within potable water distribution systems, and can react with disinfectants (e.g., chloride) to form harmful disinfection by-products. In addition, residual DOC may carry with it organically bound toxic heavy metals. DOC in aquatic ecosystems may ultimately be transported to the oceans, or released back to the atmosphere by heterotrophic respiration, which can accelerate global climate change. There is evidence that DOC concentrations in aquatic ecosystems are increasing in many regions of the world including Europe, North America, and even in Korea. Land use changes, elevated temperature, elevated $CO_2$, recovery from acidification, and nitrogen deposition have been proposed as mechanisms for the trend. However, the key driving mechanism is yet to be conclusively determined. We propose that more extensive and longer-term observations, research of chemical properties of DOC, impacts of elevated DOC on environmental issues and interdisciplinary approaches are warranted as future studies to fill the gaps in our knowledge about DOC dynamics.

Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration

  • Lee, Sook Kyung;Jeong, Hae Jin;Jang, Se Hyeon;Lee, Kyung Ha;Kang, Nam Seon;Lee, Moo Joon;Potvin, Eric
    • ALGAE
    • /
    • v.29 no.2
    • /
    • pp.137-152
    • /
    • 2014
  • Mixotrophic protists play diverse roles in marine food webs as predators and prey. Thus, exploring mixotrophy in phototrophic protists has emerged as a critical step in understanding marine food webs and cycling of materials in marine ecosystem. To investigate the feeding of newly described mixotrophic dinoflagellate Ansanella granifera, we explored the feeding mechanism and the different types of species that A. granifera was able to feed on. In addition, we measured the growth and ingestion rates of A. granifera feeding on the prasinophyte Pyramimonas sp., the only algal prey, as a function of prey concentration. A. granifera was able to feed on heterotrophic bacteria and the cyanobacterium Synechococcus sp. However, among the 12 species of algal prey offered, A. granifera ingested only Pyramimonas sp. A. granifera ingested the algal prey cell by engulfment. With increasing mean prey concentration, the growth rate of A. granifera feeding on Pyramimonas sp. increased rapidly, but became saturated at a concentration of $434ngCmL^{-1}$ (10,845 cells $mL^{-1}$). The maximum specific growth rate (i.e., mixotrophic growth) of A. granifera feeding on Pyramimonas sp. was $1.426d^{-1}$, at $20^{\circ}C$ under a 14 : 10 h light-dark cycle of $20{\mu}Em^{-2}s^{-1}$, while the growth rate (i.e., phototrophic growth) under similar light conditions without added prey was $0.391d^{-1}$. With increasing mean prey concentration, the ingestion rate of A. granifera feeding on Pyramimonas sp. increased rapidly, but slightly at the concentrations ${\geq}306ngCmL^{-1}$ (7,649 cells $mL^{-1}$). The maximum ingestion rate of A. granifera feeding on Pyramimonas sp. was 0.97 ng C $predator^{-1}d^{-1}$ (24.3 cells $grazer^{-1}d^{-1}$). The calculated grazing coefficients for A. granifera feeding on co-occurring Pyramimonas sp. were up to $2.78d^{-1}$. The results of the present study suggest that A. granifera can sometimes have a considerable grazing impact on the population of Pyramimonas spp.