Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, $TiO_2/TiOF_2$ heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from $400^{\circ}C$ to $800^{\circ}C$. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single $TiOF_2$ and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the $TiO_2/TiOF_2$ heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.
Since the discovery of graphene by mechanical exfoliation from graphite[1], various fabrication methods are available today such as chemical exfoliation, epitaxial graphene on SiC substrates, etc. In view of industrialization, the mechanical exfoliation method may not be an option. Epitaxial graphene on SiC substrates, in this respect, is by far more practical because the method consists of conventional thermal treatments familiar to semiconductor industry. Still, the use of the SiC substrate itself, and hence the incompatibility with the Si technology, lessens the importance of this technology in its future industrialization. In this context, we have tackled the problem of forming graphene on Si substrates (GOS). Our strategy is to form an ultrathin (~80 nm) SiC layer on top of a Si substrate, and to graphitize the top SiC layers by a vacuum annealing. We have actually succeeded in forming the GOS structure [2,3,4]. Raman-scattering microscopy indicates presence of few-layer graphene (FLG) formed on our annealed SiC/Si heterostructure, with the G ($1580\;cm^{-1}$) and the G'($2700\;cm^{-1}$) bands, both related to ideal graphene, clearly observed. Presence of the D ($1350\;cm^{-1}$) band indicates presence of defects in our GOS films, whose elimination remains as a challenge in the future. To obtain qualified graphene films on Si substrate, formation of qualified SiC films is crucial in the first place, and is achieved by tuning the growth parameters into a process window[5]. With a potential for forming graphene films on large-scale Si wafers, GOS is a powerful candidate as a key technology in bringing graphene into silicon technology.
전하 트랩형 비휘발성 메모리는 10년 이상의 데이터 보존 능력과 빠른 쓰기/지우기 속도가 요구 된다. 그러나 두 가지 특성은 터널 산화막의 두께에 따라 서로 trade off 관계를 갖는다. 즉, 두 가지 특성을 모두 만족 시키면서 scaling down 하기는 매우 힘들다. 이것의 해결책으로 적층된 유전막을 터널 산화막으로 사용하여 쓰기/지우기 속도와 데이터 보존 특성을 만족하는 Tunnel Barrier engineered Memory (TBM)이 있다. TBM은 가운데 장벽은 높고 기판과 전극쪽의 장벽이 낮은 crested barrier type이 있으며, 이와 반대로 가운데 장벽은 낮고 기판과 전극쪽의 장벽이 높은 VARIOT barrier type이 있다. 일반적으로 유전율과 밴드갭(band gap)의 관계는 유전율이 클수록 밴드갭이 작은 특성을 갖는다. 이러한 관계로 인해 일반적으로 crested type의 터널 산화막층은 high-k/low-k/high-k의 물질로 적층되며, VARIOT type은 low-k/high-k/low-k의 물질로 적층된다. 이 형태는 밴드갭이 다른 물질을 적층했을 때 전계에 따라 터널 장벽의 변화가 민감하여 전자의 장벽 투과율이 매우 빠르게 변화하는 특징을 갖는다. 결국 전계에 민감도 향상으로 쓰기/지우기 속도가 향상되며 적층된 유전막의 물리적 두께의 증가로 인해 데이터 보존 특성 또한 향상되는 장점을 갖는다. 본 연구에서는 기존의 TBM과 다른 형태의 staggered tunnel barrier를 제안한다. staggered tunnel barrier는 heterostructure의 에너지 밴드 구조 중 하나로 밴드 line up은 두 밴드들이 같은 방향으로 shift된 형태이다. 즉, 가전자대 에너지 장벽의 minimum이 한 쪽에 생기면 전도대 에너지 장벽의 maximum은 반대쪽에 생기는 형태를 갖는다. 이러한 밴드구조를 갖는 물질을 터널 산화막층으로 하게 되면 쓰기/지우기 속도를 증가시킬 수 있으며, 데이터 보존 능력 모두 만족할 수 있어 TBM의 터널 산화막으로의 사용이 기대된다. 본 연구에서 제작한 staggered TBM소자의 터널 산화막으로는 $Si_3N_4$/HfAlO (Hf:Al=1:3)을 사용하여 I-V(current-voltage), Retention, Endurance를 측정하여 메모리 소자로서의 특성을 분석하였으며, 터널 산화막의 제 1층인 $Si_3N_4$의 두께를 1.5 nm, 3 nm일 때의 특성을 비교 분석하였다.
Nguyen, Thi Mai Tho;Bui, The Huy;Dang, Nguyen Nha Khanh;Ho, Nguyen Nhat Ha;Vu, Quang Huy;Ngo, Thi Tuong Vy;Do, Manh Huy;Duong, Phuoc Dat;Nguyen, Thi Kim Phuong
Korean Journal of Chemical Engineering
/
제35권12호
/
pp.2442-2451
/
2018
Novel highly active visible-light photocatalysts in the form of zinc bismuth oxide ($ZnBi_2O_4$) and graphite hybrid composites were prepared by coupling via a co-precipitation method followed by calcination at $450^{\circ}C$. The asprepared $ZnBi_2O_4$-graphite hybrid composites were tested for the degradation of rhodamine B (RhB) solutions under visible-light irradiation. The existence of strong electronic coupling between the two components within the $ZnBi_2O_4$-graphite heterostructure suppressed the photogenerated recombination of electrons and holes to a remarkable extent. The prepared composite exhibited excellent photocatalytic activity, leading to more than 93% of RhB degradation at an initial concentration of $50mg{\cdot}L^{-1}$ with 1.0 g catalyst per liter in 150 min. The excellent visible-light photocatalytic mineralization of $ZnBi_2O_4-1.0graphite$ in comparison with pristine $ZnBi_2O_4$ could be attributed to synergetic effects, charge transfer between $ZnBi_2O_4$ and graphite, and the separation efficiency of the photogenerated electrons and holes. The photo-induced $h^+$ and the superoxide anion were the major active species responsible for the photodegradation process. The results demonstrate the feasibility of $ZnBi_2O_4-1.0graphite$ as a potential heterogeneous photocatalyst for environmental remediation.
ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and $O_2$ mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and room-temperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when $O_2$ is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ${\pm}3V$ of the reverse and forward bias voltage is about $5.8{\times}10^3$, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.
Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.
반데르발스 물질이란 층간 결합이 약한 반데르발스 결합으로 이루어진 이차원 층상구조를 지닌 물질을 의미하며, 이러한 반데르발스 이차원 소재를 이용한 이종접합 구조 연구는 그래핀이 발견된 이후 꾸준히 연구되고 있다. 본 논문에서는 대기압 화학기상증착법을 통해 성장된 단층 단결정 MoSe2를 기반으로하는 반데르발스 이종접합 트랜지스터 소자에 대해 보고한다. 최적화된 공정조건에서 성장된 MoSe2는 원자수준의 결함이 존재하지 않는 것을 밝혔으며, 이를 이용한 트랜지스터 소자 또한 우수한 특성을 보인다는 것을 밝혀내었다.
This paper demonstrates the effect of fluoride-based plasma treatment on the performance of $Al_2O_3/AlGaN/GaN$ metal-insulator-semiconductor heterostructure field effect transistors (MISHFETs) with a T-shaped gate length of $0.20{\mu}m$. For the fabrication of the MISHFET, an $Al_2O_3$ layer as a gate dielectric was deposited using atomic layer deposition, which greatly decreases the gate leakage current, followed by the deposition of the silicon nitride layer. The silicon nitride layer on the gate foot region was then selectively removed through a reactive ion etching technique using $CF_4$ plasma. The etching process was continued for a longer period of time even after the complete removal of the silicon nitride layer to expose the $Al_2O_3$ gate dielectric layer to the plasma environment. The thickness of the $Al_2O_3$ gate dielectric layer was slowly reduced during the plasma exposure. Through this plasma treatment, the device exhibited a threshold voltage shift of 3.1 V in the positive direction, an increase of 50 mS/mm in trans conductance, a degraded off-state performance and a larger gate leakage current compared with that of the reference device without a plasma treatment.
ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.
본 논문에서는 형광체가 없는 백색 LED의 성장과 광학적인 특성을 분석하였다. 혼합소스(miked-source) HVPE(hydride vapor phase epitaxy) 방법과 다중성장보트를 이용하여 MOCVD로 얇게 성장한 n-GaN 위에 활성층을 AlGaN으로 한 이종접합구조(DH; Doublehetero structure)를 성장하고, 패키징 단계를 거쳐 비형광체 단일칩 백색 LED 램프를 제작하였다. 패키징 한 소자를 주입전류 $10{\sim}100mA$로 변화시켜 측정한 결과 색 연색성 값은 72-93, 색좌표의 좌표값은 X값은 $0.26{\sim}0.34$, Y값은 $0.31{\sim}0.40$에서 가지며, 색온도는 $5126{\sim}10406K$ 범위에서 측정되었다. 또한 주입전류 증가 시, 형광체를 사용한 백색 LED는 청색 영역으로 이동하지만, 제작된 백색 LED는 황색영역으로 색좌표가 이동하였다. 이러한 특성을 통하여 고감도의 색 연색성 값을 가지는 비형광체 백색LED의 성장 가능성을 확인하였으며, 광 특성 분석 결과를 통하여 혼합소스의 성장 메커니즘을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.