• 제목/요약/키워드: heterostructure

검색결과 249건 처리시간 0.04초

초음파 분무 열분해 공정을 이용한 TiO2와 TiOF2 복합체 분말의 합성과 상 분율에 따른 광학적 성질 (Synthesis and Optical Properties of TiO2/TiOF2 Composite Powder with Controlled Phase Fractions via an Ultrasonic Spray Pyrolysis Process)

  • 황보영;박우영;이영인
    • 한국재료학회지
    • /
    • 제27권6호
    • /
    • pp.325-330
    • /
    • 2017
  • Photoelectron-hole separation efficiency plays an important role in the enhancement of the photocatalytic activity of photocatalysts towards the degradation of organic molecules. In this study, $TiO_2/TiOF_2$ heterostructured composite powders with suitable band structures, which structures are able to separate photoelectron-hole pairs, have been synthesized using a simple and versatile ultrasonic spray pyrolysis process. In addition, their phase volume fractions have been controlled by varying the pyrolysis temperature from $400^{\circ}C$ to $800^{\circ}C$. The structural and optical properties of the synthesized powders have been characterized by X-ray diffraction, scanning electronic microscopy and UV-vis spectroscopy. The powder with a phase volume ratio close to 1, compared with single $TiOF_2$ and other composite powders with different phase volume fractions, was found to have superior photocatalytic activity for the degradation of rhodamine B. This result shows that the $TiO_2/TiOF_2$ heterostructure promotes the separation of the photoinduced electrons and holes and that this powder can be applicable to environmental cleaning applications.

Graphene formation on 3C-SiC ultrathin film on Si substrates

  • Miyamoto, Yu;Handa, Hiroyuki;Fukidome, Hirokazu;Suemitsu, Maki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.9-10
    • /
    • 2010
  • Since the discovery of graphene by mechanical exfoliation from graphite[1], various fabrication methods are available today such as chemical exfoliation, epitaxial graphene on SiC substrates, etc. In view of industrialization, the mechanical exfoliation method may not be an option. Epitaxial graphene on SiC substrates, in this respect, is by far more practical because the method consists of conventional thermal treatments familiar to semiconductor industry. Still, the use of the SiC substrate itself, and hence the incompatibility with the Si technology, lessens the importance of this technology in its future industrialization. In this context, we have tackled the problem of forming graphene on Si substrates (GOS). Our strategy is to form an ultrathin (~80 nm) SiC layer on top of a Si substrate, and to graphitize the top SiC layers by a vacuum annealing. We have actually succeeded in forming the GOS structure [2,3,4]. Raman-scattering microscopy indicates presence of few-layer graphene (FLG) formed on our annealed SiC/Si heterostructure, with the G ($1580\;cm^{-1}$) and the G'($2700\;cm^{-1}$) bands, both related to ideal graphene, clearly observed. Presence of the D ($1350\;cm^{-1}$) band indicates presence of defects in our GOS films, whose elimination remains as a challenge in the future. To obtain qualified graphene films on Si substrate, formation of qualified SiC films is crucial in the first place, and is achieved by tuning the growth parameters into a process window[5]. With a potential for forming graphene films on large-scale Si wafers, GOS is a powerful candidate as a key technology in bringing graphene into silicon technology.

  • PDF

Staggered Tunnel Barrier engineered Memory

  • 손정우;박군호;조원주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.255-255
    • /
    • 2010
  • 전하 트랩형 비휘발성 메모리는 10년 이상의 데이터 보존 능력과 빠른 쓰기/지우기 속도가 요구 된다. 그러나 두 가지 특성은 터널 산화막의 두께에 따라 서로 trade off 관계를 갖는다. 즉, 두 가지 특성을 모두 만족 시키면서 scaling down 하기는 매우 힘들다. 이것의 해결책으로 적층된 유전막을 터널 산화막으로 사용하여 쓰기/지우기 속도와 데이터 보존 특성을 만족하는 Tunnel Barrier engineered Memory (TBM)이 있다. TBM은 가운데 장벽은 높고 기판과 전극쪽의 장벽이 낮은 crested barrier type이 있으며, 이와 반대로 가운데 장벽은 낮고 기판과 전극쪽의 장벽이 높은 VARIOT barrier type이 있다. 일반적으로 유전율과 밴드갭(band gap)의 관계는 유전율이 클수록 밴드갭이 작은 특성을 갖는다. 이러한 관계로 인해 일반적으로 crested type의 터널 산화막층은 high-k/low-k/high-k의 물질로 적층되며, VARIOT type은 low-k/high-k/low-k의 물질로 적층된다. 이 형태는 밴드갭이 다른 물질을 적층했을 때 전계에 따라 터널 장벽의 변화가 민감하여 전자의 장벽 투과율이 매우 빠르게 변화하는 특징을 갖는다. 결국 전계에 민감도 향상으로 쓰기/지우기 속도가 향상되며 적층된 유전막의 물리적 두께의 증가로 인해 데이터 보존 특성 또한 향상되는 장점을 갖는다. 본 연구에서는 기존의 TBM과 다른 형태의 staggered tunnel barrier를 제안한다. staggered tunnel barrier는 heterostructure의 에너지 밴드 구조 중 하나로 밴드 line up은 두 밴드들이 같은 방향으로 shift된 형태이다. 즉, 가전자대 에너지 장벽의 minimum이 한 쪽에 생기면 전도대 에너지 장벽의 maximum은 반대쪽에 생기는 형태를 갖는다. 이러한 밴드구조를 갖는 물질을 터널 산화막층으로 하게 되면 쓰기/지우기 속도를 증가시킬 수 있으며, 데이터 보존 능력 모두 만족할 수 있어 TBM의 터널 산화막으로의 사용이 기대된다. 본 연구에서 제작한 staggered TBM소자의 터널 산화막으로는 $Si_3N_4$/HfAlO (Hf:Al=1:3)을 사용하여 I-V(current-voltage), Retention, Endurance를 측정하여 메모리 소자로서의 특성을 분석하였으며, 터널 산화막의 제 1층인 $Si_3N_4$의 두께를 1.5 nm, 3 nm일 때의 특성을 비교 분석하였다.

  • PDF

Facile synthesis of ZnBi2O4-graphite composites as highly active visible-light photocatalyst for the mineralization of rhodamine B

  • Nguyen, Thi Mai Tho;Bui, The Huy;Dang, Nguyen Nha Khanh;Ho, Nguyen Nhat Ha;Vu, Quang Huy;Ngo, Thi Tuong Vy;Do, Manh Huy;Duong, Phuoc Dat;Nguyen, Thi Kim Phuong
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2442-2451
    • /
    • 2018
  • Novel highly active visible-light photocatalysts in the form of zinc bismuth oxide ($ZnBi_2O_4$) and graphite hybrid composites were prepared by coupling via a co-precipitation method followed by calcination at $450^{\circ}C$. The asprepared $ZnBi_2O_4$-graphite hybrid composites were tested for the degradation of rhodamine B (RhB) solutions under visible-light irradiation. The existence of strong electronic coupling between the two components within the $ZnBi_2O_4$-graphite heterostructure suppressed the photogenerated recombination of electrons and holes to a remarkable extent. The prepared composite exhibited excellent photocatalytic activity, leading to more than 93% of RhB degradation at an initial concentration of $50mg{\cdot}L^{-1}$ with 1.0 g catalyst per liter in 150 min. The excellent visible-light photocatalytic mineralization of $ZnBi_2O_4-1.0graphite$ in comparison with pristine $ZnBi_2O_4$ could be attributed to synergetic effects, charge transfer between $ZnBi_2O_4$ and graphite, and the separation efficiency of the photogenerated electrons and holes. The photo-induced $h^+$ and the superoxide anion were the major active species responsible for the photodegradation process. The results demonstrate the feasibility of $ZnBi_2O_4-1.0graphite$ as a potential heterogeneous photocatalyst for environmental remediation.

산소 혼합 비율에 따른 RF 스퍼터링 ZnO 박막과 n-ZnO/p-Si 이종접합 다이오드의 특성 (Effect of Oxygen Mixture Ratio on the Properties of ZnO Thin-Films and n-ZnO/p-Si Heterojunction Diode Prepared by RF Sputtering)

  • 권익선;김단비;김예원;연응범;김선태
    • 한국재료학회지
    • /
    • 제29권7호
    • /
    • pp.456-462
    • /
    • 2019
  • ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and $O_2$ mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and room-temperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when $O_2$ is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ${\pm}3V$ of the reverse and forward bias voltage is about $5.8{\times}10^3$, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.

고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성 (Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes )

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF

화학기상증착법을 통한 고품질 단층 MoSe2합성 및 반데르발스 수직이종 접합 구조 기반 고성능 트랜지스터 제작 (Chemical Vapor Deposition of High-Quality MoSe2 Monolayer and Its Application to van der Waals Heterostructure-Based High-Performance Field-Effect Transistors)

  • 임시헌;김선우;최선연;김현호
    • 접착 및 계면
    • /
    • 제24권1호
    • /
    • pp.36-40
    • /
    • 2023
  • 반데르발스 물질이란 층간 결합이 약한 반데르발스 결합으로 이루어진 이차원 층상구조를 지닌 물질을 의미하며, 이러한 반데르발스 이차원 소재를 이용한 이종접합 구조 연구는 그래핀이 발견된 이후 꾸준히 연구되고 있다. 본 논문에서는 대기압 화학기상증착법을 통해 성장된 단층 단결정 MoSe2를 기반으로하는 반데르발스 이종접합 트랜지스터 소자에 대해 보고한다. 최적화된 공정조건에서 성장된 MoSe2는 원자수준의 결함이 존재하지 않는 것을 밝혔으며, 이를 이용한 트랜지스터 소자 또한 우수한 특성을 보인다는 것을 밝혀내었다.

Effect of Fluoride-based Plasma Treatment on the Performance of AlGaN/GaN MISHFET

  • Ahn, Ho-Kyun;Kim, Hae-Cheon;Kang, Dong-Min;Kim, Sung-Il;Lee, Jong-Min;Lee, Sang-Heung;Min, Byoung-Gue;Yoon, Hyoung-Sup;Kim, Dong-Young;Lim, Jong-Won;Kwon, Yong-Hwan;Nam, Eun-Soo;Park, Hyoung-Moo;Lee, Jung-Hee
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.675-684
    • /
    • 2016
  • This paper demonstrates the effect of fluoride-based plasma treatment on the performance of $Al_2O_3/AlGaN/GaN$ metal-insulator-semiconductor heterostructure field effect transistors (MISHFETs) with a T-shaped gate length of $0.20{\mu}m$. For the fabrication of the MISHFET, an $Al_2O_3$ layer as a gate dielectric was deposited using atomic layer deposition, which greatly decreases the gate leakage current, followed by the deposition of the silicon nitride layer. The silicon nitride layer on the gate foot region was then selectively removed through a reactive ion etching technique using $CF_4$ plasma. The etching process was continued for a longer period of time even after the complete removal of the silicon nitride layer to expose the $Al_2O_3$ gate dielectric layer to the plasma environment. The thickness of the $Al_2O_3$ gate dielectric layer was slowly reduced during the plasma exposure. Through this plasma treatment, the device exhibited a threshold voltage shift of 3.1 V in the positive direction, an increase of 50 mS/mm in trans conductance, a degraded off-state performance and a larger gate leakage current compared with that of the reference device without a plasma treatment.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

혼합소스 HVPE에 의한 비형광체 백색 LED의 성장과 광 특성 (Growth and optical characteristics of the non-phosphor white LED by mixed-source HVPE)

  • 김은주;전헌수;홍상현;한영훈;이아름;김경화;양민;하홍주;안형수;황선령;조채용;김석환
    • 한국결정성장학회지
    • /
    • 제19권2호
    • /
    • pp.61-65
    • /
    • 2009
  • 본 논문에서는 형광체가 없는 백색 LED의 성장과 광학적인 특성을 분석하였다. 혼합소스(miked-source) HVPE(hydride vapor phase epitaxy) 방법과 다중성장보트를 이용하여 MOCVD로 얇게 성장한 n-GaN 위에 활성층을 AlGaN으로 한 이종접합구조(DH; Doublehetero structure)를 성장하고, 패키징 단계를 거쳐 비형광체 단일칩 백색 LED 램프를 제작하였다. 패키징 한 소자를 주입전류 $10{\sim}100mA$로 변화시켜 측정한 결과 색 연색성 값은 72-93, 색좌표의 좌표값은 X값은 $0.26{\sim}0.34$, Y값은 $0.31{\sim}0.40$에서 가지며, 색온도는 $5126{\sim}10406K$ 범위에서 측정되었다. 또한 주입전류 증가 시, 형광체를 사용한 백색 LED는 청색 영역으로 이동하지만, 제작된 백색 LED는 황색영역으로 색좌표가 이동하였다. 이러한 특성을 통하여 고감도의 색 연색성 값을 가지는 비형광체 백색LED의 성장 가능성을 확인하였으며, 광 특성 분석 결과를 통하여 혼합소스의 성장 메커니즘을 제안하고자 한다.