• 제목/요약/키워드: heterologous protection

검색결과 11건 처리시간 0.024초

Immunogenicity of a DNA and Recombinant Protein Vaccine Combining LipL32 and Loa22 for Leptospirosis Using Chitosan as a Delivery System

  • Umthong, Supawadee;Buaklin, Arun;Jacquet, Alain;Sangjun, Noppadol;Kerdkaew, Ruthairat;Patarakul, Kanitha;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.526-536
    • /
    • 2015
  • Leptospirosis is a worldwide zoonotic disease caused by pathogenic Leptospira, a genus of which more than 250 serovars have been identified. Commercial bacterin vaccines are limited in that they lack both cross-protection against heterologous serovars and long-term protection. This study investigated in mice the immunogenicity of an anti-leptospirosis vaccine, using the outer membrane proteins LipL32 and Loa22 as antigens. The immunogenicity of this vaccine formulation was compared with those induced by vaccines based on LipL32 or Loa22 alone. A DNA-encapsulated chitosan nanoparticle was used for in vivo DNA delivery. Using a unique DNA plasmid expressing both lipL32 and loa22 for vaccination, higher antibody responses were induced than when combining plasmids harboring each gene separately. Therefore, this formulation was used to test the immunogenicity when administered by a heterologous prime (DNA)-boost (protein) immunization regimen. The specific antibody responses against LipL32 (total IgG and IgG1) and Loa22 (IgG1) were higher in mice receiving two antigens in combination than in those vaccinated with a single antigen alone. Although no significant difference in splenic CD4+ T cell proliferation was observed among all groups of vaccinated mice, splenocytes from mice vaccinated with two antigens exhibited higher interferon-γ and IL-2 production than when using single antigens alone upon in vitro restimulation. Taken together, the immunogenicity induced by LipL32 and Loa22 antigens in a heterologous primeboost immunization regimen using chitosan as a DNA delivery system induces higher immune response, and may be useful for developing a better vaccine for leptospirosis.

Safety and immunogenicity of different booster vaccination schemes for COVID-19 used in El Salvador

  • Xochitl Sandoval;Rhina Dominguez;Delmy Recinos;Susana Zelaya;Patricia Cativo;Guillermo Horacio Docena
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권1호
    • /
    • pp.35-41
    • /
    • 2024
  • Purpose: The effectiveness of coronavirus disease 2019 (COVID-19) vaccination schemes and the combination of vaccines of various platforms for administering booster doses is still being studied since it will depend on the population's response to vaccines. We aimed to evaluate the safety, protection, and immunogenicity of the Salvadorean population's third dose booster COVID-19 vaccine and the potential benefit of homologous vs. heterologous regimens. Materials and Methods: This is an analytical observational cohort study in a population aged 18 to 65 years that was primarily vaccinated with AstraZeneca, Sinovac, or Pfizer/BioNTech. Volunteers were recruited (n=223) and followed up for 3 months after receiving the 3rd vaccine (BNT162b2) as a booster. Adverse reactions were monitored, serum anti-spike immunoglobulin G (IgG) was assessed by chemiluminescence, and a polymerase chain reaction was carried out when subjects developed clinical signs. Results: The cohorts finally included 199 participants, and we observed only mild adverse effects in all cohorts. A significant increase in specific IgG levels was found after the booster dose in all cohorts. The heterologous scheme with Sinovac showed the greatest increase in antibody titer, and a decrease was observed in all participants after 3 months. During the follow-up period, 30 participants showed symptomatology compatible with COVID-19, but only four were laboratory-confirmed and they showed mild clinical signs. Conclusion: These findings indicate that the booster doses used were safe and promoted an immediate increase in immunogenicity, which decreased over time. The heterologous regimen showed stronger immunogenicity compared to the messenger RNA-based homologous scheme.

Establishment of a Simple and Rapid Gene Delivery System for Cucurbits by Using Engineered Zucchini Yellow Mosaic Virus

  • Kang, Minji;Seo, Jang Kyun;Choi, Hoseong;Choi, Hong Soo;Kim, Kook Hyung
    • The Plant Pathology Journal
    • /
    • 제32권1호
    • /
    • pp.70-76
    • /
    • 2016
  • The infectious full-length cDNA clone of zucchini yellow mosaic virus (ZYMV) isolate PA (pZYMV-PA), which was isolated from pumpkin, was constructed by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Simple rub-inoculation of plasmid DNAs of pZYMV-PA was successful to cause infection of zucchini plants (Cucurbita pepo L.). We further engineered this infectious cDNA clone of ZYMV as a viral vector for systemic expression of heterologous proteins in cucurbits. We successfully expressed two reporter genes including gfp and bar in zucchini plants by simple rub-inoculation of plasmid DNAs of the ZYMV-based expression constructs. Our method of the ZYMV-based viral vector in association with the simple rub-inoculation provides an easy and rapid approach for introduction and evaluation of heterologous genes in cucurbits.

Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses

  • Kwak, Chaewon;Nguyen, Quyen Thi;Kim, Jaemoo;Kim, Tae-Hwan;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.304-316
    • /
    • 2021
  • Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 ㎍) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 ㎍) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.

$Fasciola$ $gigantica$ Fatty Acid Binding Protein (FABP) as a Prophylactic Agent against $Schistosoma$ $mansoni$ Infection in CD1 Mice

  • Aly, Ibrahim Rabia;Diab, M.;El-Amir, A.M.;Hendawy, M.;Kadry, S.
    • Parasites, Hosts and Diseases
    • /
    • 제50권1호
    • /
    • pp.37-43
    • /
    • 2012
  • Although schistosomicidal drugs and other control measures exist, the advent of an efficacious vaccine remains the most potentially powerful means for controlling this disease. In this study, native fatty acid binding protein (FABP) from $Fasciola$ $gigantica$ was purified from the adult worm's crude extract by saturation with ammonium sulphate followed by separation on DEAE-Sephadex A-50 anion exchange chromatography and gel filtration using Sephacryl HR-100, respectively. CD1 mice were immunized with the purified, native $F.$ $gigantica$ FABP in Freund's adjuvant and challenged subcutaneously with 120 $Schistosoma$ $mansoni$ cercariae. Immunization of CD1 mice with $F.$ $gigantica$ FABP has induced heterologous protection against $S.$ $mansoni$, evidenced by the significant reduction in mean worm burden (72.3%), liver and intestinal egg counts (81.3% and 80.8%, respectively), and hepatic granuloma counts (42%). Also, it elicited mixed $IgG_1/IgG_{2b}$ immune responses with predominant $IgG_1$ isotype, suggesting that native $F.$ $gigantica$ FABP is mediated by a mixed Th1/Th2 response. However, it failed to induce any significant differences in the oogram pattern or in the mean granuloma diameter. This indicated that native $F.$ $gigantica$ FABP could be a promising vaccine candidate against $S.$ $mansoni$ infection.

Expression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae

  • Kwak, Geun-Hee;Kim, Jae-Ryong;Kim, Hwa-Young
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.113-118
    • /
    • 2009
  • Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 protein (MsrB3B) was localized to the cytosol, but not to the mitochondria, of the yeast cells. The mitochondrial MsrB2 protein was detected in the mitochondria and, to a lesser extent, the cytosol of the yeast cells. In this study, we report the first evidence that MsrB3 overexpression in yeast cells protected them against $H_2O_2$-mediated cell death. Additionally, MsrB2 overexpression also provided yeast cells with resistance to oxidative stress, as did MsrA overexpression. Our results show that mammalian MsrB and MsrA proteins perform crucial functions in protection against oxidative stress in lower eukaryotic yeast cells.

HIV-1 Vaccine Development: Need For New Directions

  • Cho Michael W.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2000년도 추계학술발표대회
    • /
    • pp.78-82
    • /
    • 2000
  • The AIDS epidemic continues unabated in many part of the world. After near two decades, no vaccine is available to combat the spread of this deadly disease. Much of the HIV -1 vaccine effort during the past decade has focused on the viral envelope glycoprotein, largely because it is the only protein that can elicit neutralizing antibodies (Nabs). Eliciting broadly cross-reactive Nabs has been a primary goal. The intrinsic genetic diversity of the viral envelope, however, has been one of the major impediments in vaccine development. We have recently completed a comprehensive study examining whether it is possible to elicit broadly acting Nabs by immunizing monkeys with mixtures of envelope proteins from multiple HIV -1 isolates. We compared the humoral immune responses elicited by vaccination with either single or multiple envelope proteins and evaluated the importance of humoral and non-humoral immune response in protection against a challenge virus with a homologous or heterologous envelope protein. Our results show that (1) Nab is the correlate of sterilizing immunity, (2) Nabs against primary HIV -1 isolates can be elicited by the live vector-prime/protein boost approach, and (3) polyvalent envelope vaccines elicit broader Nab response than monovalent vaccines. Nonetheless, our findings clearly indicate that the increased breadth of Nab response is by and large limited to strains included in the vaccine mixture and does not extend to heterologous non-vaccine strains. Our study strongly demonstrates how difficult it may be to elicit broadly reactive Nabs using envelope proteins and sadly predicts a similar fate for many of the vaccine candidates currently being evaluated in clinical trials. We have started to evaluate other vaccine candidates (e.g. genetically modified envelope proteins) that might elicit broadly reactive Nabs. We are also exploring other vaccine strategies to elicit potent cytotoxic T lymphocyte responses. Preliminary results from some of these experiments will be discussed.

  • PDF

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

  • Dao, Hoai Thu;Truong, Quang Lam;Do, Van Tan;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.20.1-20.13
    • /
    • 2020
  • Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.

Coordinated Spatial and Temporal Expression of Voltage-sensitive calcium Channel ${\alpha}_{1A}$ and $\beta_4$ Subunit mRNAs in Rat Cerebellum

  • Kim, Dong-Sun;Chin, Hemin
    • Animal cells and systems
    • /
    • 제1권4호
    • /
    • pp.589-594
    • /
    • 1997
  • The neuronal voltage-sensitive calcium channels (VSCCs) are multisubunit complexes consisting of $\alpha_1,\;\alpha_2-\delta$ and $\beta$ subunits. Heterologous expression and biochemical studies have shown that the activity of VSCCs is regulated by their $\beta$ subunits in a $\beta$ subunit isoform-specific manner. To elucidate the $\beta$ subunit identity of the P/Q-type calcium channel encoded by an $\alpha_{1A}$ subunit, which is exclusively expressed in the Purkinje and granule cell of the cerebellum, we have examined the spatial and temporal expression patterns of $\beta$ subunits and compared them with those of $\alpha_{1A}$ subunit in the developing rat cerebellum. Reverse transcriptase- polymerase chain reaction (RT-PCR) and Northern blot analysis have shown that $\beta_4$ subunit mRNA was prominently expressed in the cerebellum and much more abundant than any other distinct $\beta$ subunits. RNase protection assay has further demonstrated that the expression of $\alpha_{1A}$ and $\beta_4$ subunits increased during cerebellar development, while the amount of $\beta_2$ and $\beta_3$ mRNAs did not significantly change. In addition, a $\beta_4$ transcript was present in cultured cerebellar granule cells, but not in astrocyte cells, and the level of $\beta_4$ mRNA expression increased gradually in vitro seen as in vivo. Based on the spatial and temporal expression patterns of $\beta_4$ subunit, we conclude that $\beta_4$ may predominantly associate, but probably not exclusively, with the $\alpha_{1A}$ subunit in rat cerebellar granule cells.

  • PDF

Efficacy of genotype-matched Newcastle disease virus vaccine formulated in carboxymethyl sago starch acid hydrogel in chickens vaccinated via different routes

  • Mahamud, Siti Nor Azizah;Bello, Muhammad Bashir;Ideris, Aini;Omar, Abdul Rahman
    • Journal of Veterinary Science
    • /
    • 제23권4호
    • /
    • pp.25.1-25.14
    • /
    • 2022
  • Background: The commercially available Newcastle disease (ND) vaccines were developed based on Newcastle disease virus (NDV) isolates genetically divergent from field strains that can only prevent clinical disease, not shedding of virulent heterologous virus, highlighting the need to develop genotype-matched vaccines Objectives: This study examined the efficacy of the NDV genotype-matched vaccine, mIBS025 strain formulated in standard vaccine stabilizer, and in carboxymethyl sago starch-acid hydrogel (CMSS-AH) following vaccination via an eye drop (ED) and drinking water (DW). Methods: A challenge virus was prepared from a recent NDV isolated from ND vaccinated flock. Groups of specific-pathogen-free chickens were vaccinated with mIBS025 vaccine strain prepared in a standard vaccine stabilizer and CMSS-AH via ED and DW and then challenged with the UPM/NDV/IBS362/2016 strain. Results: Chickens vaccinated with CMSS-AH mIBS025 ED (group 2) developed the earliest and highest Hemagglutination Inhibition (HI) NDV antibody titer (8log2) followed by standard mIBS025 ED (group 3) (7log2) both conferred complete protection and drastically reduced virus shedding. By contrast, chickens vaccinated with standard mIBS025 DW (group 5) and CMSS-AH mIBS025 DW (group 4) developed low HI NDV antibody titers of 4log2 and 3log2, respectively, which correspondingly conferred only 50% and 60% protection and continuously shed the virulent virus via the oropharyngeal and cloacal routes until the end of the study at 14 dpc. Conclusions: The efficacy of mIBS025 vaccines prepared in a standard vaccine stabilizer or CMSS-AH was affected by the vaccination routes. The groups vaccinated via ED had better protective immunity than those vaccinated via DW.