• Title/Summary/Keyword: heterodyne system

Search Result 71, Processing Time 0.025 seconds

Research on the Influence of Polarization Aberration on Heterodyne Efficiency in Space Coherent Laser Communication System

  • Zheng, Yang;Piao, Yu
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2022
  • Heterodyne efficiency is an indicator to evaluate the performance of space coherent laser communication systems. It is affected by signal light and local oscillator (LO) light amplitude, phase and polarization state. In this paper, based on the common heterodyne efficiency, a heterodyne efficiency model that can reflect polarization aberration of optical system is proposed. The heterodyne efficiency is analyzed when the signal light and the LO light are linearly polarized or circularly polarized. For a coherent communication optical system, when the incident signal light is right-circularly polarized light and the incident LO light is 45° linear polarized light. Based on the three-dimensional ray tracing theory and the heterodyne efficiency proposed in this paper, the change of polarization states and the distribution of heterodyne efficiency of the signal light and LO light influenced by the optical system's polarization aberration are analyzed. Analysis shows that the heterodyne efficiency model proposed in this paper can be used to evaluate coherent communication systems and reflect the influence of optical system polarization aberration.

AFM modulation algorithm for the high speed measurement using a heterodyne laser interferometer (헤테로다인 레이저 간섭계에서 고속 측정을 위한 주파수 변조 알고리즘)

  • Choi H.S.;Yoon H.S.;Park K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.922-925
    • /
    • 2005
  • This article describes a FM modulation algorithm to increase the measurement speed by increasing the beat frequency of the laser without acousto-optic modulator(AOM) in the heterodyne laser interferometer. The proposed algorithm can increase the beat frequency of the heterodyne laser which limit the measurement speed by adjusting a carrier frequency through electronic circuit, while AOM is used to shift the frequency of the heterodyne laser in conventional method. Electronic circuit is constructed to modulate the signals from a laser interferometer and a waveform generator. The brier analysis, the measurement scheme of the system, and the experimental results using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed algorithm is proven to enhance the measurement speed limit by increasing the beat frequency of the heterodyne laser.

  • PDF

SAW ID Tag and Receiver System for Passive RFID System Application (수동형 RFID 시스템 적용을 위한 SAW ID 태그 및 수신 시스템 구현)

  • Kim, Jae-Kwon;Park, Joo-Yong;Burm, Jin-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.64-71
    • /
    • 2008
  • SAW (Surface Acoustic Waves) ID (identification) tags have been designed and implemented for RFID (Radio frequency IDentification) systems. With SAW ID tag of pulse position encoding method, the data capacity increased 3 times compared with SAW ID tag of amplitude on/off method. Two different kinds of SAW ID tag receiver systems, heterodyne and homodyne receiver systems, were made. The direct conversion receiver showed better isolation property, 10 dB improvement than the heterodyne receiver to increase wireless interrogation distance.

A study on the measurement of vibration using Laser Doppler Interferometer (레이저 도플러 간섭계를 이용한 진동 측정에 관한연구)

  • Kim, Chang-Hyun;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1738-1740
    • /
    • 1996
  • Laser Doppler Vibrometer using heterodyne method with a 632.8 nm He-Ne laser, has been developed for the measurement of small displacement and velocity. The measurement uses heterodyne method can be made insensitive to undesired vibration effect acting the system and can yield the sign of Doppler shift at the expense of increased complexity. A Bragg cell gives a frequency shift of 40MHz for heterodyne method. Frequency Modulated output is detected by spectrum analyzer.

  • PDF

Optical Probe of white Light Interferometry for Precision Coordinate Metrology (정밀 삼차원 측정을 위한 백색광 간섭 광학 프로브 개발)

  • 김승우;진종한;강민구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.195-198
    • /
    • 2002
  • Demand for high precision measurement of large area is increasing in many industrial fields. White-light Scanning Interferometer(WSI) is a well-known method for 3D profile measurement. However WSI has some limitations in a measurement range because of the sensing mechanism. Therefore, in this paper we use a heterodyne laser interferometer to get over the limitations of a short measurement range in WSI, We suggest a new WSI system combined with heterodyne laser interferometer. This system is aimed at eliminating Abbe error with measuring the focus point directly. With the use of triggering functionality of WSI, we can use this system as a probe of a precision stage such as a probe of CMM. The suggested system gives a repeatability of 87 nm in the absolute distance measurement test under the laboratory environment.

  • PDF

Error Compensation in Heterodyne Laser Interferometer using Data Fusion Method (데이터 퓨전 기법을 이용한 헤테로다인 레이저 간섭계의 오차보정)

  • Heo, Gun-Haeng;Sung, Wook-Jin;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.225-226
    • /
    • 2007
  • In the semiconductor manufacturing industry, the heterodyne laser interferometer plays as an ultra-precise measurement system. However, the heterodyne laser interferometer has some unwanted environmental error which is caused from refraction in the air. This is an obstacle to improve the measurement accuracy in nanometer scale. In this paper we propose a compensation algorithm based on Data Fusion method which reduces the environmental error in the heterodyne laser interferometer. Through some experiments, we demonstrate the effectiveness of the proposed algorithm in measurement accuracy.

  • PDF

Precise Position Control of a Linear Stage with I/Q heterodyne Interferometer Feedback

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, J.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1142-1146
    • /
    • 2004
  • The ultra precision linear stage is an essential device in the fields of MEMS and Bio technology. A piezo electric motor is widely used for its better linear characteristics, faster response time, and smaller size than conventional electro-magnetic actuator. We develop a new inchworm type motor to implement an actuator-integrated a long stroke linear stage which can move fast. To implement a servo system, we use a heterodyne interferometer as a position sensor, and we propose a new measurement technique using I/Q demodulator, and we propose a counting method to measure the position of fast moving object with low cost circuitry. The characteristics of the actuator and servo system are evaluated by measuring its displacement with a commercial laser interferometer.

  • PDF

New Inchworm type Actuator with I/Q heterodyne Interferometer Feedback for a Long Stroke Precision Stage

  • Moon Chanwoo;Lee Sungho;Chung J.K
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.34-39
    • /
    • 2005
  • The precision stage is an essential device for optic fiber assembly systems, micro machines and semiconductor equipments. A new piezoelectric inchworm type actuator is proposed to implement an actuator-integrated long-stroke linear stage. An in-and-quadrature phase (I/Q) heterodyne interferometer is developed as a feedback sensor of a servo system, and a synchronized counting method is proposed. The proposed measurement system can measure the accurate position of fast moving object with robustness to external sensing noise from actuator vibration. The developed servo stage will be applied to optic fiber device assembly system.

Measurement of electron density of atmospheric pressure Ne plasma jet by laser heterodyne Interferometer with voltage

  • Lim, Jun Sup;Hong, Young June;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.140.1-140.1
    • /
    • 2015
  • Currently, As Plasma application is expanded to the industrial and medical industrial, Low temperature plasma characteristics became important. Especially in Medical industrial, Low temperature plasma directly adapted to human skin, so their plasma parameter is important. One of the plasma parameters is electron density, some kinds of method to measuring electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods is expensive to composed of experiment system. Heterodyne interferometer system is cheap and simple to setting up, So we tried to measuring electron density by Laser heterodyne interferometer. To measuring electron density at atmospheric pressure, we need to obtain the phase shift signal. And we use a heterodyne interferometer. Our guiding laser is Helium-Neon laser which generated 632 nm laser. We set up to chopper which can make a laser signal like a pulse. Chopper can make a 4 kHz chopping. We used Needle jet as Ne plasma sources. Interference pattern is changed by refractive index of electron density. As this refractive index change, phase shift was occurred. Electron density is changed from Townsend discharge's electron bombardment, so we observed phenomena and calculated phase shift. Finally, we measured electron density by refractive index and electron density relationship. The calculated electron density value is approximately 1015~1016 cm-3. And we studied electron density value with voltage.

  • PDF

Research on the Technology of Alternative Continuous Wide Spectral Spatial Heterodyne Spectrometer

  • Zhang, Wenli;Tian, Fengchun;Zhao, Zhenzhen;Song, An;Zhang, Li
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.295-307
    • /
    • 2017
  • An innovative system for the alternative continuous wide spectral spatial heterodyne spectrometer (ACWS-SHS) is proposed. The relationship between the ACWS-SHS and the wide spectral spatial heterodyne spectrometer (WS-SHS) at the resolution limit, the spectral range, the grating diffraction efficiency and the interference fringes contrast ratio has been analyzed theoretically. Through the comparison of the theoretical analysis and simulation results, it is found that the two systems for the WS-SHS and the ACWS-SHS have the same resolution limit and spectral range, which are ${\delta}{\sigma}$ and ${\sigma}_{01}$, while in the ACWS-SHS system the critical diffraction efficiency of echelle grating is 68.39% and the critical contrast ratio of interference fringes is 0.4135, which is much better than the performance of the WS-SHS system. Therefore, the ACWS-SHS reduces the high requirements for the precision of equipment and expands the application field of SHS effectively.