• Title/Summary/Keyword: hepatic damages

Search Result 62, Processing Time 0.035 seconds

Metronidazole Reduced Ammonia Toxicity in Human Hep G2 cell and Rat Hepatocytes (Hep G2 세포와 rat 간세포에서 Metronidazole에 의한 암모니아 독성 감소)

  • Kim, Bo-Ae;Kim, Hyun-Jung;Kim, You-Young
    • KSBB Journal
    • /
    • v.23 no.5
    • /
    • pp.381-386
    • /
    • 2008
  • Lipophilic ammonia is toxic gas and can easily diffuse across cell membranes. Excess ammonia is implicated in the pathogenesis of several metabolic disorders including hepatic encephalopathy and may result in the death. The purpose of this study was to clarify the inhibition effect of metronidazole on liver cell damage due to ammonia in human Hep G2 cell and rat hepatocytes. The effects of metronidazole were studied in ammonium chloride treated human Hep G2 cell (75 mM) and rat hepatocyte (100 mM) following $0.1{\mu}M$ metronidazole treatment. In MTZ+AC group, cell viabilities increased prominently and LDH activities decreased over 25% than AC group. Furthermore, ammonia level according to ammonium chloride treatment reduced over 30% and lipid peroxidation as an index of cell membrane damage decreased more than twice. By comparison with control, catalase activity showed more than 30% reduction in AC group while less than 10% reduction in MTZ+AC group, respectively. In addition, MTZ+AC group showed the similar cell structure as control in cell morphology study by using light microscope, and represented fluorescent intensity decrement compared with AC group in fluorescent microscopic study with avidin-TRITC fluorescent dye. And cleaved PARP expression due to ammonia reduced twofold or more in MTZ+AC group. As the results suggest, metronidazole may protect the liver cell by inhibiting cell damages due to ammonia and be used for an effective antagonist of ammonia in hyperammonemia.

Effects of Insamyangyoung-tang Aqueous Extracts on the Hypothyroidism Induced by Propylthiouracil in Rats (인삼양영탕(人蔘養榮湯)이 PTU로 유발된 Rat의 갑상선기능저하증에 미치는 영향)

  • Park, Eun-Young;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.55-75
    • /
    • 2015
  • Objectives : The object of this study was to evaluate the effect of Insamyangyoung-tang aqueous extracts (ISYYT) on the propylthiouracil (PTU) induced rat hypothyroidism. Methods : The rats were divided into 6 groups : intact control, PTU control, Levothyroxine (LT 4 ), 500, 250 and 125 mg/kg ISYYT treated groups. In ISYYT treated groups, PTU and ISYYT were administered for 4 weeks after 500, 250 and 125 mg/kg ISYYT were administered for 2 weeks. In LT 4 group, PTU and LT 4 were administered for 4 weeks. The changes were observed : the weigh, serum thyroid hormone levels, serum sex hormone levels, serum lipid profiles, serum liver enzyme levels, liver and testis antioxidant defense system, histopathology of thyroid gland, liver, epididymis, prostate and testis. Results were compared with PTU control group in this experiment. Results : In comparison with PTU control group, 500 and 250 mg/kg ISYYT treated groups showed significant increase of body, thyroid, liver, testis, epididymis and prostate weights, decrease of serum TSH levels with increase of serum T3 and T4 level, increase of serum testosterone and DHT levels with decrease of serum FSH levels, decrease of serum HDL with increase of TG and increase of serum AST levels. Histopathological inspections of hepatic and male reproductive organ damage induced by PTU were improved. And the changes of antioxidant defense system of Liver and testis induced by PTU were improve. There was no significant difference between 125 mg/kg ISYYT treated group and PTU control group in this experiment. Conclusions : The results obtained in this study considered that Insamyangyoung-tang may be effective in hypothyroidism and related organ damages.

Hepaprotective Effect of Standardized Ecklonia stolonifera Formulation on CCl4-Induced Liver Injury in Sprague-Dawley Rats

  • Byun, Jae-Hyuk;Kim, Jun;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.218-223
    • /
    • 2018
  • The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride ($CCl_4$)-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of $CCl_4$ (1.5 ml/kg, twice a week for 14 days). The administration of $CCl_4$ exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2'-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to $CCl_4$ induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in $CCl_4$ induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by $CCl_4$ via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.

Enzyme hydrolysate of silk protein suppresses tert-butyl hydroperoxide-induced hepatotoxicity by enhancing antioxidant activity in rats

  • Suh, Hyung Joo;Kang, Bobin;Kim, Chae-Young;Choi, Hyeon-Son
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.550-558
    • /
    • 2017
  • The purpose of current study is to investigate the beneficial effect of enzyme (Alcalase) hydrolysates of silk protein in rat. Alcalase-treated silk protein hydrolysate (ATSH) itself did not show any cytotoxicity on the hepatic tissues and blood biochemistry, similar to the normal condition. ATSH played a protective role in tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity and liver damage. The values of AST (aspartate aminotransferase) and ALT (alanine aminotransferase), which are the indicators of the liver function, were effectively alleviated with the ATSH treatment in a dose dependent manner. The level of Lactate dehydrogenase (LDH) and Malondialdehyde (MDA), which were increased with t-BHP treatment, were significantly reduced by ATSH. High dose of ATSH (2 g/kg) reduced the t-BHP-induced LDH release by 48%. Antioxidant and antioxidant enzymes in liver cells were significantly increased by ATSH treatment in their level and activities. ATSH (2 g/kg) increased glutathione (GSH), an intracelluar antioxidant, by 2.5-fold compared with the t-BHP treated group. The activities of glutathione-s-transferase (GST), superoxide dismutase (SOD), and catalase were also elevated by 38%, 60%, and 45%, respectively, with ATSH (2 g/kg) treatment. The antioxidative effect of ATSH was recapitulated to the protection from t-BHP induced liver damages in hematoxylin and eosin (H&E) staining. Thus, ATSH might be used as a hepatoprotective agent.

QuEChERS-based determination of tissue residues and acute toxicity of pyraclofos in rat (QuEChERS 법을 이용한 Rat 조직내 Pyraclofos 잔류 분석 및 급성독성 평가)

  • Pyo, Min-Jung;Hah, Do-Yun;Choi, You-Jeong;Jeong, Kwi-Ok;Han, Chang-Hee;Park, Young-Ho;Kim, Min-Hee;Kim, Won-Gyu;Jung, Jing-Gune;Kim, Munki;Kim, Euikyung
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • Environmental pesticides used for insect control can be transferred from plants to animals even to livestock animals through food chain. Human beings also can be exposed to pesticides by consuming polluted dairy products, including meats, eggs and other milk products. Therefore, the Ministry of Food and Drug Safety (MFDS) established Standard for Pesticide Residue Limits in dairy products. The QuEChERS (quick, easy, cheap, effective, rugged and safe) methods for detecting residual pesticides are relatively well established for fruits and vegetables, however, the methods for meat have not been appropriately studied yet. In the present work, pyraclofos was used as an organophosphate pesticide to examine its tissue residue in experimental animals by QuEChERS methods. For this, pyraclofos (150 mg/kg body weight) was orally administered to male rats once a day for 2 days. After 6, 12, and 24 hr of the treatment, the tissue residues in liver and femoral muscle of the rats were determined using QuEChERS methods followed by HPLC analyses. In preliminary studies, the recovery rates of spiking samples of pyraclofos demonstrated approximately 109~110% from the tissues. In previous study, pyraclofos tissue residues were observed with significantly high levels in livers and muscles at 6 hr of oral treatment. Then, they were almost completely disappeared after 24 hr of the administration, indicating the orally exposed pyraclofos is rapidly absorbed and distributed to body organs, then quickly excreted from the body with a negligible level of tissue residue. The alterations in blood chemistry as well as the histopathology of heart, lung, liver, spleen and kidney have also been investigated in the experimental animals for assessing acute toxic effects of pyraclofos. The obtained blood chemistry indexes (ALT and AST) showed maximum peak values at 12 hr after the oral administration and decreased to the normal levels at 24 hr of the treatment. Histopathologic observation exhibited acute hepatic damages at 24 hr of the treatment. In conclusion, we suggest that QuEChERS method can be adequately optimized for the analysis of pyraclofos residues in animal tissues.

The Effects of Chungganhaeju-tang(Qingganjiejiu-tang) on Alcoholic Liver Damages by Applying Proteomics (청간해주탕(淸肝解酒湯)이 알코올 유발 간섬유화와 단백질 발현에 미치는 영향)

  • Jun, Jae-Hyun;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.469-489
    • /
    • 2008
  • Objectives : The purpose of this study was to investigate the effects of Chungganhaeju-tang(Qingganjiejiu-tang) on alcoholic liver damaged by applying proteomics. Materials and Methods : Sprague-Dawley rats were used in this experiment the rats were divided into the normal group, the control group(alcohol) and the sample group(CGHJT +alcohol). The ethanol was orally administered twice a day for 6 weeks in the control and sample groups. Water instead of ethanol was orally administered twice a day for 6 weeks in the normal group. CGHJT extract was orally administered once a day for 6 weeks in the sample group. The livers of each group were processed and assessed by histology, Western Blot, $Oxyblot^{TM}$, CBB and 2-dimensional electrophoresis. Results : In the histological findings of the liver, CGHJT inhibited hepatic fibrogenesis induced by alcohol. TIMP-1 decreased in the sample group assessed by western blot and statistical significance was noted by dot blotting(p<0.05). In the $Oxyblot^{TM}$, protein oxidation induced by alcohol treatment decreased with CGHJT. In the 2-dimensional electrophoresis finding, increased proteins alcohol such as HSP 60, 60kDa heat shock protein, 3-mercaptopyruvate sulfurtransferase were normalized by CGHJT. CGHJT was considered to normalize the anti-oxidation activity elevated by alcohol. In the 2-dimensional electrophoresis finding, increased oxidized proteins such as actin, prolyl 4-hydroxylase beta polypeptide, 94kDa glucose regulated protein(GRP94), heat shock protein 90-alpha(HSC86), calreticulin precursor(CRP55), ATP synthase beta chain mitochondrial precursor, caspase-8 precursor, and dihydrolipoamide succinyltransferase(E2) decreased with CGHJT. CGHJT was considered to reduce the oxidative stress of alcohol. Conclusion : Chungganhaeju-tang(Qingganjiejiu-tang) exerts an inhibitory effect against the fibrosis and protein oxidation induced by alcohol treatment of rat liver. CGHJT was considered to normalize the elevated anti-oxidation activity by alcohol and to reduce the level of oxidative stress due to alcohol.

  • PDF

The Protective Activity of Soeumin Bojungykgi-tang Water Extract Against Oxidative Stress-induced Hepato-Toxicity (산화적 스트레스로 유도된 간손상에 대한 소음인보중익기탕 열수추출물의 간세포보호효과)

  • Son, Jin Won;Jung, Ji Yun;Kim, Kwang-Youn;Hwangbo, Min;Park, Chung A;Cho, IL Je;Back, Young Doo;Jung, Tae Young;Kim, Sang Chan;Jee, Seon Young
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.509-526
    • /
    • 2017
  • Background and objectives : Soeumin Bojungykgi-tang (seBYTE) has been used to supplement qi in Korean medicine. It has been demonstrated to possess various biological functions such as anti-cancer, anti-aging and anti-inflammatory effects. The present study evaluated the protective roles of seBYTE in hepatotoxic in vitro and in vivo model. Methods : To investigate cytoprotective effect of seBYTE, HepG2 cells were pretreated with seBYTE and then subsequently exposed to $10{\mu}m$ AA for 12 h, followed by $5{\mu}m$ iron. Cell viability was examined by MTT assay, and expression of apoptosis-related proteins was evaluated by immunoblot analysis. For responsible molecular mechanisms, ROS production, GSH contents, and mitochondrial membrane potential were measured. In addition, hepatoprotective effect of seBYTE in vivo was assessed in $CCl_4$-induced animal model. Results : seBYTE prevented AA + iron-induced cytotoxicity in concentration dependent manner. In addition, ROS production, GSH depletion, and mitochondrial dysfunction induced by AA + iron were significantly reduced by seBYTE pretreatment. Furthermore, seBYTE recovered expression of the pro-apoptotic proteins such as PARP and pro-caspase-3. In animal experiment, plasma ALT and AST levels were significantly elevated in $CCl_4$ treatment, but seBYTE significantly decreased the ALT and AST levels. Moreover, seBYTE alleviated the numbers of histological activity index, percentages of degenerative regions, degenerated hepatocytes, infiltrated inflammatory cells, nitrotyrosine- and 4-hydroxynonenal-positive cells in liver. Conclusions : These results showed that hepatoprotective effect of seBYTE against on $CCl_4$-induced hepatic damages is partly due to antioxidative and anti-apoptotic process.

Effects of Cultured Acer tegmentosum Cell Extract Against Hepatic Injury Induced by D-galactosamine In SD-Rats (산겨릅나무 세포배양 추출물이 D-galactosamine 유도 급성 간손상에 미치는 보호 효과)

  • Park, Young Mi;Kim, Jin Ah;Kim, Chang Heon;Lim, Jae Hwan;Seo, Eul Won
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.551-560
    • /
    • 2015
  • Here we report the protective activity of cultured Acer tegmentosum cell extract against liver damage in rat intentionally instigated by D-galactosamine. Local fat degeneration and infiltration of inflammatory cells were significantly decreased in cultured A. tegmentosum cell extract administered rat. In addition, acutely increased AST, ALT, LDH, ALP activities and lipid peroxidation and lipid content by liver damage were recovered in experimental rat administrated with A. tegmentosum extract. These results showed that cultured A. tegmentosum cell extract has a role in blood enzyme activation and lipid content restoration within damaged rat liver tissues. Moreover expression rate of TNF-α which accelerates inflammation and induces tissue damage and necrosis was significantly decreased. Also activities of antioxidant enzymes were more effectively upregulated comparing to those of the control group induced hepatotoxicity. All data that cultured A. tegmentosum cell extract has a preventive role against liver damages such as inflammation, tissue necrosis in rats by improving activities of blood enzymes, antioxidant enzymes and modulating expression of inflammation factor, suggest that cultured Acer tegmentosum cell extract is an effective medicinal resource for restoration of hepatotoxicity.

Hepatoprotective Effects of Hovenia dulcis Fruit on Ethanol-Induced Liver Damage in vitro and in vivo (세포 및 동물모델에서의 알코올에 의해 유발된 간손상에 대한 지구자 추출물의 보호효과)

  • You, Yang-Hee;Jung, Kuk-Yung;Lee, Yoo-Hyun;Jun, Woo-Jin;Lee, Boo-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.2
    • /
    • pp.154-159
    • /
    • 2009
  • The hepatoprotective effect of ethanol extract from Hovenia dulcis fruit (HD) against ethanol-induced oxidative damage was investigated. Ethanol-induced reactive oxygen species (ROS) generation and liver damage on HepG2/2E1 cells were protected by $100{\mu}g/mL$ ethanolic extract from HD. Male C57BL/6 mice were divided into 3 groups; control (NC), ethanol (ET), ethanol plus 1 g/kg body weight ethanolic extract of HD (ET-HD). The activities of serum alanine amintransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly increased in ethanol-treated group. However, ET-HD group showed protective effect by lowering serum activities. The ET group markedly decreased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione-s-transferase (GST) with the reduced level of glutathione (GSH) in liver. On the other hand, ET-HD group increased the activities of SOD and GST, and the level of GSH. Lipid peroxidation level, which was increased after ethanol administration, was significantly reduced in ET-HD group. Based upon these results, it could be assumed that ethanolic extract of HD protected the liver against ethanol-induced oxidative damage by possibly inhibiting the suppression of antioxidant activity and reducing the rate of lipid peroxidation in vitro and in vivo. Therefore, extract of Hovenia dulcis fruit might be used as a protective agent for ethanol-induced hepatic damages.

Potential Role of Hedgehog Signaling in Radiation-induced Liver Fibrosis (방사선에 의한 간섬유증에서 헤지호그의 잠재적 역할)

  • Wang, Sihyung;Jung, Youngmi
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.710-720
    • /
    • 2013
  • Radiotherapy is commonly used in treating many kinds of cancers which cannot be cured by other therapeutic strategies. However, radiotherapy also induces the damages on the normal tissues. Radiation-induced fibrosis is frequently observed in the patients undergoing radiotherapy, and becomes a major obstacle in the treatment of intrahepatic cancer. Hedgehog (Hh) that is an essential in the liver formation during embryogenesis is not detected in the healthy liver, but activated and modulates the repair process in damaged livers in adult. The expression of Hh increases with the degree of liver damage, regulating the proliferation of hepatic progenitors and hepatic stellate cells (HSC). In addition, Hh induces epithelial-to-mesencymal transition (EMT) and activation of myofibroblasts. In the irradiated livers, up-regulated expression of Hh signaling was associated with proliferation of progenitors, EMT induction, and increased fibrosis. Female-specific expression of Hh leaded to the expansion of progenitors and the accumulation of collagen in the irradiated livers of female mice, indicating that gender disparity in Hh expression may be related with radiation-susceptibility in female. Hence, Hh signaling becomes a novel object of studies for fibrogenesis induced by radiation. However, the absence of the established experimental animal models showing the similar physiopathology with human liver diseases and fibrosis-favorable microenvironment hamper the studies for the radiation-induced fibrosis, providing a few descriptive results. Therefore, further research on the association of Hh with radiation-induced fibrosis can identify the cell and tissue-specific effects of Hh and provides the basic knowledge for underlying mechanisms, contributing to developing therapies for preventing the radiation-induced fibrosis.