• 제목/요약/키워드: hemodynamics of cardiovascular system

검색결과 29건 처리시간 0.028초

인체 심혈관계의 이론적 분석을 위한 시스템 시뮬레이션모델에 관한 연구 (Systemic Simulation Models for the Theoretical Analysis of Human Cardiovascular System)

  • 고형종;윤찬현;심은보
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1181-1188
    • /
    • 2004
  • This paper reviews the main aspects of cardiovascular system dynamics with emphasis on modeling hemodynamic characteristics using a lumped parameter approach. Methodological and physiological aspects of the circulation dynamics are summarized with the help of existing mathematical models: The main characteristics of the hemodynamic elements, such as the heart and arterial and venous systems, are first described. Lumped models of micro-circulation and pulmonary circulation are introduced. We also discuss the feedback control of cardiovascular system. The control pathways that participate in feedback mechanisms (baroreceptors and cardiopulmonary receptors) are described to explain the interaction between hemodynamics and autonomic nerve control in the circulation. Based on a set-point model, the computational aspects of reflex control are explained. In final chapter we present the present research trend in this field and discuss the future studies of cardiovascular system modeling.

급성 동정맥루를 포함하는 인체 심혈관계의 혈류역학적 거동에 관한 수치 해석적 연구 (Computational Study on the Hemodynamic Behaviors of the Human Cardiovascular System with an Acute Arteriovenous Fistula)

  • 변수영;손정락;심은보;노승탁
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.329-337
    • /
    • 2003
  • 선천적 혹은 후천적인 이유로 인하여 인체 특정 부위의 정맥과 동맥이 서로 관통하여 동맥계의 혈류가 말초 혈관계를 우회하여 정맥계로 흐르게 되는 동정맥루는 인체 심혈관계의 혈류 역학적 거동에 큰 영향을 미치게 된다. 본 연구에서는 lumped parameter 모델을 기반으로 하는 수치 해석 방법을 사용하여 우측 하지에 위치한 급성 동정맥루가 전체 심혈관계에 미치는 영향을 해석적으로 고찰하였다. 이를 위하여 동정맥루가 포함된 인체 심혈관계를 전기 회로 상사계로 구성하였으며. 부위별 혈압과 관련된 상미분 연립 방정식을 4차의 Runge-Kutta방법으로 풀어서 시간에 따른 혈류 역학적 변수들을 구하였다 이때 급성 동정맥루의 생성에 따른 혈류 역학적 보상작용을 분석하기 위하여 arterial baroreflex 제어계를 모델에 포함하였다.

심혈관계의 노화현상에 대한 혈류역학적 시뮬레이션 (Hemodynamic simulation of the aging effect on the cardiovascular system)

  • 변수영;손정락;심은보;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.713-716
    • /
    • 2002
  • Aging effect on the cardiovascular circulation is simulated by lumped parameter model. Aging phenomena can be hemodynamically explained as (1) the increase of flow resistance induced by remodeling of artery vessels and increased viscosity of blood and (2) the reduction of the vessel capacitance caused by arteriosclerosis. Appropriate physiological parameters are evaluated from the clinical data of adults and old men. Simulation results well explain the hypertension with aging of cardiovascular system.

  • PDF

세포-신경계-혈류역학 시스템 통합모델에 의한 심장역학 분석 (Computational analysis of heart mechanics using a cell-autonomic nerve control-hemodynamic system coupled model)

  • 전형민;심은보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2941-2946
    • /
    • 2007
  • A model of the cardiovascular system coupling cell, hemodynamics and autonomic nervecontrol function is proposed for analyzing heart mechanics. We developed a comprehensive cardiovascular model with multi-physics and multi-scale characteristics that simulates the physiological events from membrane excitation of a cardiac cell to contraction of the human heart and systemic blood circulation and ultimately to autonomic nerve control. Using this model, we delineatedthe cellular mechanism of heart contractility mediated by nerve control function. To verify the integrated method, we simulated a 10% hemorrhage, which involves cardiac cell mechanics, circulatory hemodynamics, and nerve control function. The computed and experimental results were compared. Using this methodology, the state of cardiac contractility, influenced by diverse properties such as the afterload and nerve control systems, is easily assessed in an integrated manner.

  • PDF

심근세포-심혈관계 혈류역학이 결합된 복합적 순환계 모델에 관한 연구 (A Multi-scale Simulation Model of Circulation Combining Cardiovascular Hemodynamics with Cardiac Cell Mechanism)

  • 고형종;임채헌;심은보
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1164-1171
    • /
    • 2004
  • A new multi-scale simulation model is proposed to analyze heart mechanics. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. The ion transports across cell membrane initiated by action potential induce an excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to calculate the tension of cross bridge which is closely related to the ion dynamics in cytoplasm. To convert the tension on cell level into contraction force of cardiac muscle, we introduce a simple geometric model of ventricle with a thin-walled hemispheric shape. It is assumed that cardiac tissue is composed of a set of cardiac myocytes and its orientation on the hemispheric surface of ventricle remains constant everywhere in the domain. Application of Laplace law to the ventricle model enables us to determine the ventricular pressure that induces blood circulation in a body. A lumped parameter model with 7 compartments is utilized to describe the systemic circulation interacting with the cardiac cell mechanism via NL model and Laplace law. Numerical simulation shows that the ion transports in cell level eventually generate blood hemodynamics on system level via cross bridge dynamics and Laplace law. Computational results using the present multi-scale model are well compared with the existing ones. Especially it is shown that the typical characteristics of heart mechanics, such as pressure volume relation, stroke volume and ejection fraction, can be generated by the present multi-scale cardiovascular model, covering from cardiac cells to circulation system.

Mechanisms of Russell's Viper Venom Toxicity on Renal Function; Reversal by Antivenom

  • Chaiyabutr, Narongsak;Napathorn, Sophon;Sitprija, Visith
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.117-125
    • /
    • 2001
  • Envenoming by Russells viper causes a broad spectrum of renal impairment. Renal failure is an important complication in patients bitten by Russells viper. Experimental work in animals and in vitro has elucidated pathophysiological mechanisms that contribute to life threatening complications and have suggested possibilities for therapeutic intervention. The evidence in experimental animals regarding mechanisms of venom action in relation to changes in either extrarenal or intrarenal factors is presented. The cardiovascular system and renal hemodynamics are affected by venom. Reductions of renal function including renal hemodynamics are associated directly with changes in general circulation during envenomation. Possible endogenous mechanisms for releasing the hormone inducing renal vasoconstriction after envenomation are evident. Hormonal factor such as the catecholamine, prostaglandin and renin angiotensin systems induce these changes. Direct nephrotoxicity of venom action is studied in the isolated per-fused kidney. Characteristic polarization of the cell membrane, changes of mitochondrial activity and Na-K ATPase in renal tubular cells are observed. Changes in renal function and the cardiovascular system are observed of ter envenomation and are reversed by the administration of Russells viper antivenom (purified equine immunoglobulin, $Fab_2$ fragment). The neutralizing effects are more efficient when the intravenous injection of antivenom is given within 30 min after the envenomation.

  • PDF

Influences of an Experimental Exposure to Excavator Noise on the Cardiac Factors and Cerebral Hemodynamics

  • Hyun Kyung-Yae;Choi Seok-Cheol;Oh Kwang-Seok;Kwon Heun-Young;Kim Jai-Young;Kim Tae-Un
    • 대한의생명과학회지
    • /
    • 제11권3호
    • /
    • pp.397-405
    • /
    • 2005
  • Noise may cause damage of the auditory system, hypertension, and cardiovascular disease. However, we haven't the data enough to be available for understanding various effects of noise on the human body. The current study was prospectively designed to investigate the changes of the cardiac factors and cerebral hemodynamics following a transient exposure to noise in young people. 80 subjects (mean aged $23.45\pm2.40$ years) participated in this experiment and were exposed to excavator-noise with 90 decibels for 15 minutes using ear-phone. Cardiac factors such as heart rate (HR), blood pressure (BP) and heart rate-systolic pressure product (RPP), and cerebral hemodynamics such as mean blood flow velocities (Vm), pulsatility indexes (PI), resistance indexes (RI) and mean blood flow velocities at breathing-hold (Vh) in the middle (MCA), anterior (ACA) and posterior cerebral arteries (PCA) were measured before (baseline) and during the noise-exposure. Although there were individual differences in above mentioned parameters, HR, systolic and diastolic BP, RPP, MCA-Vm, MCA-PI, MCA-RI, ACA-Vm, ACA-PI, ACA-RI, PCA-Vm, PCA-PI, and PCA-RI during the noise-exposure decreased compared with the baselines (P<0.05 or P<0.01), The findings of the present study suggest that a transient exposure to excavator-noise at rest causes changes in the cardiac factors and cerebral hemodynamics with individual differences. Further studies need to be carried out for clarifying the effects of longer exposure and combined mental activity with noise exposure.

  • PDF

단기적 자율조절기능을 포함하는 심혈관계 혈류역학 모델링에 관한 수치적 연구 (Computational Study on the Hemodynamics of Cardiovascular System Including Short-term Auto-regulation Functions)

  • 심은보;정찬일;최한고
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권5호
    • /
    • pp.393-402
    • /
    • 2001
  • 전체 심혈관계의 혈류역학적 특성을 분석할 수 있는 수치해석 방법을 개발하였다. 이는 12개의 요소들로 구성된 lumped parameter모델에 기초하고 있으며 인체의 신경계에 의한 자율조절기능을 모사하기 위해 주로 혈압의 단기적 조절을 위한.baroreflex system뿐 아니라 cardiopulmonary reflex 메커니즘가지도 구현하여 모델에 포함시켰다. 또한 교감 및 부교감 신경에 의한 자극-반응 전달을 구현함에 있어 생리학적 데이터에 기초한 방법을 사용하였다. 본 연구의 수치해석 코드를 검증하기 위하여 우선 보통 상태의 심혈관계에 대하여 혈류역학적 계산 결과를 기존의 참고문헌들에서의 값들과 비교 검토하였다. 심혈관계 모델의 혈류역학적 자극에 대한 반응 결과를 조사하기 위하여. 20% 출혈이 발생하는 경우와 LBNP(Lower Body Negative Pressure) 모사를 수행하였다. 두 경우 모두. 비교적 실험치와 잘 일cl하고 있음을 확인할 수 있었다. 특히 LBNP 수행 시, 외부압력의 크기가 커질수록 baroreflex만을 포함하고 있는 방법은 baroreflex와 cardiopulmonary reflex 모두를 포함하고 있는 방법에 비하여 다소 부정확한 결과를 보여주고 있는데. 이는 cardiopulmonary reflex 메커니즘의 중요성을 보여주고 있다.

  • PDF

아문(瘂門)(GV15)의 홍화약침(紅花藥針)이 백서(白鼠)의 뇌혈류역학(腦血流力學) 변동(變動)에 미치는 영향(影響) (Effects of Aqua-Acupuncture of Carthami Flos(GV15) on the Changes of Cerebral Hemodynamics in Rats)

  • 안영선;위통순;조명래;채우석;윤여충
    • Journal of Acupuncture Research
    • /
    • 제19권5호
    • /
    • pp.92-111
    • /
    • 2002
  • Objective : Carthami Flos has been used as a herb to promote blood circulation to remove blood stasis in oriental medicine for many centuries, and Amun(GV15) has been used as a meridian point to treat apoplexy etc. To investigate treatment of cerevral vascular disease(CVA) by promoting blood circulation and removing blood stasis(活血化瘀法), we observed the experimental effects and mechanism of auqa-acupunture of Carthami Flos(ACF) injected into GV15 on cerevral hemodynamics and cardiovascular system of rats. Method : Aqua-acupuncture of Carthami Flos(ACF) was injected into GV15, and then we investigated experimental effects and mechanism of ACF on the cerebral hemodynamics[regional cerebral blood flow(rCBF), pial arterial diameter(PAD), meal arterial blood pressure(MABP)] and cardiovascular system[cardiac muscle contractile force(CMF), heart rate(HR)I by pretreatment with methylene blue(MTB) and indomethacin(IDN). The changes in rCBF, MABP, CMF and HR were tested by Laser Doppler Flowmetry(LDF), and the changes in PAD was determinated by video microscopy methods and video analyzer. Results :The results were as follows in normal rats ; The changes of rCBF and PAD were significantly increased by ACF($120{\mu}{\ell}/kg$) in a injected time-dependent manner, but MABP was not changed by ACF. The changes of cardiovascular system were increased by ACF in a injected time-dependent manner. And pretreatment with MTB was significantly inhibited ACE induced increase of rCBF and PAD, and was decreased ACF induced increase of HR. And pretreatment with IDN was increased ACF induced MABP and CMF. And the results were as follows in cerebral ischemic rats ; The changes of rCBF was increased stabilizly by treatment with ACF($120{\mu}{\ell}/kg$) in during the period of cerebral reperfusion, but pretreatment with MTB was increased ACF induced increase of rCBF during the period of cerebral reperfusion. The results were as follows in normal rats ; The changes of rCBF and PAD were significantly increased by ACF($120{\mu}{\ell}/kg$) in a injected time-dependent manner, but MABP was not changed by ACF. The changes of cardiovascular system were increased by ACF in a injected time-dependent manner. And pretreatment with MTB was significantly inhibited ACF induced increase of rCBF and PAD, and was decreased ACF induced increase of HR. And pretreatment with IDN was increased ACF induced MABP and CMF. And the results were as follows in cerebral ischemic rats ; The changes of rCBF was increased stabilizly by treatment with ACF($120{\mu}{\ell}/kg$) in during the period of cerebral reperfusion, but pretreatment with MTB was increased ACF induced increase of rCBF during the period of cerebral reperfusion Conclusions : In conclusion, ACF causes a diverse response of rCBF, PAD an HR, and action of ACF is mediated by cyclic GMP. I suggested that ACF has an anti-ischemic effect through the improvement of crebral hemodynamics in a transient cerebral ischemia.

  • PDF

협 부가 있는 동맥 내부에서의 맥동유동 (Pulsatile Flow in the Artery with Stenosis)

  • 손정락;주상우;서상호;심은보
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.39-44
    • /
    • 2002
  • The arterial stenosis related to the intimal thickening of the arterial wall is the main cause of many diseases in human cardiovascular system. Hemodynamic behavior of the blood flow is influenced by the presence of the arterial stenosis. In this study, effects of the pulsatile flow, caused by the periodic motion of the heart, on the blood flow and its interaction with the arterial stenosis are analyzed by the FEM-based computational fluid dynamics. As a result, it was found that the characteristics of the pulsatile flow in the artery with stenosis are quite different from those of the steady flow. And, the pulsatile flow condition affects the wall shear stress, which is one of the most important physiological parameters in the hemodynamics.