• Title/Summary/Keyword: hematopoietic

Search Result 583, Processing Time 0.028 seconds

Alterations of Cyclosporine Concentrations by Antibiotics in Patients with Hematopoietic Stem Cell Transplantation (조혈모세포 이식환자에서 항생제 투여에 의한 cyclosporine의 혈중농도변화)

  • Song, Hun-Jung;Li, Liu Yu;Choi, Yu-Ri;Bang, Joon-Seok;La, Hyen-Oh
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.4
    • /
    • pp.305-310
    • /
    • 2011
  • 조혈모세포이식술(또는 HSCT)을 받은 환자에게는 이식관련 부작용의 예방 또는 치료를 위해 면역억제 약물이 투여되는데, 그 중 하나인 cyclosporine은 therapeutic index가 작고 다양한 요인에 의해 혈중농도가 변화되므로 사용시에는 세심한 관찰과 조절이 필요하다. 특히 HSCT 환자에서 발생하는 호중구 감소성 발열(또는 NPF)의 치료목적으로 투여하는 항생제에 의하여 cyclosporine의 혈중농도가 변화될 수 있고, 또 임상적 경과에 따라 항생제 처방이 중도에 변경되는 경우도 빈번하지만, 실제로 항생제 처방의 중간변경에 의한 cyclosporine의 혈중농도 변화양상을 연구한 결과는 많지 않다. 이에, 과거 2년 동안 한 상급종합병원에서 HSCT후 cyclosporine을 투여 받았던 환자 중에서 통상적인 NPF 치료용 항생제인 ciprofloxacin을 투여하다가 치료성과를 높이기 위하여 cefepime으로 대체 투여했던 환자들의 의무기록을 후향적으로 분석하였다. 1차 선택약인 ciprofloxacin에서 항생제를 변경했을 때 cyclosporine의 혈중농도가 유의성 있게 증가했는데, 이는 ciprofloxacin 보다 cefepime이 간에서 cyclosporine을 분해시키는 효소생성을 억제시켰기 때문일 것으로 예측되며, HSCT 환자에서 NPF 치료용 항생제를 ciprofloxacin에서 cefepime으로 변경 시에는 병용중인 cyclosporine 유지용량을 약 13% 감량하는 것이 cyclosporine의 효과는 유지하면서 부작용의 발생위험을 감소시키는 데 유용한 방안이 될 것으로 사료된다.

Inducing apoptosis by the inhibition of c-myb in oral squamous carcinoma cell line, KB cell

  • Lee, Jung-Chang;Moon, Hyun-Ju;Lee, Young-Hee;Jung, Ji-Eun;Sharma, Manju;Jhee, Eun-Jung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.32 no.4
    • /
    • pp.127-133
    • /
    • 2007
  • Oral squamous cell carcinoma (OSCC) is the most common malignancy and is a major cause of worldwide cancer mortality. The proto-oncogene c-myb plays an important role in regulation of cell growth and differentiation, and it is expressed at high levels in hematopoietic cells and many other types of cancers. However, the function of c-myb is not well known in OSCC. The present study aimed to reveal the function of c-myb and to test the alternation of cell growth and signaling by c-myb in OSCC. In this study, c-myb and dominant-negatibe myb(DNmyb) were expressed in an adenovirus-mediated gene delivery system to KB cells. The over-expressed c-myb brought increased cellular proliferation compared with control cells. However, DN-myb infected KB cells showed significant reduction of cell growth and enhanced induction of apoptosis to activate PARP and caspase 9. c-myb induced increase of IGF-I, -II and IGF-IR expressions while DN-myb down-regulated these expression. Activation of ERK and Akt/PKB pathway was shown only in c-myb transduced cells. These findings suggest that the role of c-myb in cell growth of oral cancer cells is partially mediated through the modulation of IGFs, ERK and Akt/PKB. From this results, DN-myb is strongly recommended as a curable gene for the treatment of c-myb dependent malignancies such as OSCC.

RANKL expression is mediated by p38 MAPK in rat periodontal ligament cells (백서 치주인대세포의 RANKL 발현에 대한 p38 MAPK의 역할)

  • Kim, Chong-Cheol;Kim, Young-Joon;Chung, Hyun-Ju;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.489-498
    • /
    • 2004
  • Recent studies have demonstrated that human periodontal ligament cells express receptor activation of nuclear factor ${\kappa}B$ ligand (RANKL) which enhances the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The purpose of this study is to determine the effects of p38 MAPK and JNK kinase upon regulating RANKL and OPG in response to $IL-1{\beta}$(l ng/ml) in rat periodontal ligament cells. Soluble RANKL was measured by immunoassay. The effects of p38 MAPK on RANKL and OPG expression was determined by RT-PCR. The results were as follows: 1. Periodontal ligament cells which stimulated by $IL-1{\beta}$ increased soluble RANKL synthesis by dose-dependent pattern. 2. p38 MAP kinase inhibitor (SB203580) showed regulation of soluble RANKL expression by dose-dependent manners. 3. p38 MAP kinase inhibitor (SB203580) regulated the expression of RANKL, but it dose regulate the expresseion of OPG. 4. JNK (c-jun $NH_2-terminal$ kinase) inhibitor (PD98059) did not regulate mRANKL and mOPG. These results suggested that p38 MAPK play a significant role in RANKL gene expression.

Identification of Gene Expression Signatures in Korean Acute Leukemia Patients

  • Lee kyung-Hun;Park Se-Won;Kim In-Ho;Yoon Sung-Soo;Park Seon-Yang;Kim Byoung-Kook
    • Genomics & Informatics
    • /
    • v.4 no.3
    • /
    • pp.97-102
    • /
    • 2006
  • In acute leukemia patients, several successful methods of expression profiling have been used for various purposes, i.e., to identify new disease class, to select a therapeutic target, or to predict chemo-sensitivity and clinical outcome. In the present study, we tested the peripheral blood of 47 acute leukemia patients in an attempt to identify differentially expressed genes in AML and ALL using a Korean-made 10K oligo-nucleotide microarray. Methods: Total RNA was prepared from peripheral blood and amplified for microarray experimentation. SAM (significant analysis of microarray) and PAM (prediction analysis of microarray) were used to select significant genes. The selected genes were tested for in a test group, independently of the training group. Results: We identified 345 differentially expressed genes that differentiated AML and ALL patients (FWER<0.05). Genes were selected using the training group (n=35) and tested for in the test group (n=12). Both training group and test group discriminated AML and ALL patients accurately. Genes that showed relatively high expression in AML patients were deoxynucleotidyl transferase, pre-B lymphocyte gene 3, B-cell linker, CD9 antigen, lymphoid enhancer-binding factor 1, CD79B antigen, and early B-cell factor. Genes highly expressed in ALL patients were annexin A 1, amyloid beta (A4) precursor protein, amyloid beta (A4) precursor-like protein 2, cathepsin C, lysozyme (renal amyloidosis), myeloperoxidase, and hematopoietic prostaglandin D2 synthase. Conclusion: This study provided genome wide molecular signatures of Korean acute leukemia patients, which clearly identify AML and ALL. Given with other reported signatures, these molecular signatures provide a means of achieving a molecular diagnosis in Korean acute leukemia patents.

Identification of a novel circularized transcript of the AML1 gene

  • Xu, Ai-Ning;Chen, Xiu-Hua;Tan, Yan-Hong;Qi, Xi-Ling;Xu, Zhi-Fang;Zhang, Lin-Lin;Ren, Fang-Gang;Bian, Si-Cheng;Chen, Yi;Wang, Hong-Wei
    • BMB Reports
    • /
    • v.46 no.3
    • /
    • pp.163-168
    • /
    • 2013
  • The AML1 gene is an essential transcription factor regulating the differentiation of hematopoietic stem cells into mature blood cells. Though at least 12 different alternatively spliced AML1 mRNAs are generated, three splice variants (AML1a, AML1b and AML1c) have been characterized. Here, using the reverse transcription-polymerase chain reaction with outward-facing primers, we identified a novel non-polyadenylated transcript from the AML1 gene, with exons 5 and 6 scrambled. The novel transcript resisted RNase R digestion, indicating it is a circular RNA structure that may originate from products of mRNA alternative splicing. The expression of the novel transcript in different cells or cell lines of human and a number of other species matched those of the canonical transcripts. The discovery provides additional evidence that circular RNA could stably exist in vivo in human, and may also help to understand the mechanism of the regulation of the AML1 gene transcription.

EFFECTS OF MACROPHAGE INFLAMMATORY $PROTEIN-1{\alpha}$ON THE T CELL PROLIFERATION AND THE EXPRESSION OF CD4 AND CD8 (Macrophage Inflammatory Protein $1{\alpha}$가 T세포성장 및 CD4, CD8 발현에 미치는 영향)

  • Choi, Jong-Sun;Kim, Oh-Whan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.1
    • /
    • pp.153-163
    • /
    • 1996
  • Macrophage inflammatory protein $(MIP)-1{\alpha}$ is a cytokine which produces wide range of bioactivities such as proinflammatory, immunomodulatory, and hematopoietic modulatory actions. To determine whether $MIP-1{\alpha}$ acts as a negative regulator on the functions of lymphocyte, $[^3H]$-thymidine incorporation test and flow cytometric analysis were performed by using human tonsil T cell, human peripheral blood T cell, and murine cytolytic T lymphocyte (CTL) line CTLL-2, The results were as follow. 1. When human tonsil T lymphocytes were stimulated with anti-CD3 monoclonal antibody (mAb), rate of T cell proliferation was about four times increased. 200ng/ml of $MIP-1{\alpha}$ inhibited anti-CD3 mAb-mediated T cell growth as much as 60% (P<0.05). 2. The suppression of human peripheral T cell proliferation produced by $MIP-1{\alpha}$ was dramatic, but variable among T cells derived from different individuals $(40%{\sim}90%)$. 3. $MIP-1{\alpha}$inhibited the proliferation of murine CTL line CTLL-2 as much as 75%(P<0.001). 4. When the $MIP-1{\alpha}$ was added to human peripheral T cell, cell proporation of $CD4^+$ helper T cell and $CD8^+$ CTL were not noticeably affected. The expression level of CD4, not of Cd8, however, was down regulated by $MIP-1{\alpha}$ treatment $(27%{\sim}82%)$.

  • PDF

Radioprotective Potential of Panax ginseng: Current Status and Future Prospectives (고려인삼의 방사선 방어효과에 대한 연구현황과 전망)

  • Nam, Ki-Yeul;Park, Jong-Dae;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.4
    • /
    • pp.287-299
    • /
    • 2011
  • Pharmacological effects of Panax ginseng have been demonstrated in cardiovascular system, endocrine secretion and immune system, together with antitumor, anti-stress and anti-oxidant activities. Modern scientific data show protective effect of ginseng against bone marrow cell death, increased survival rate of experimental animals, recovery of hematopoietic injury, immunopotentiation, reduction of damaged intestinal epithelial cells, inhibition of mutagenesis and effective protection against testicular damages, caused by radiation exposure. And also, ginseng acts in indirect fashion to protect radical processes by inhibition of initiation of free radical processes and thus reduces the radiation damages. The research has made much progress, but still insufficient to fully uncover the action mechanism of ginseng components on the molecule level. This review provides the usefulness of natural product, showing no toxic effects, as an radioprotective agent. Furthermore, the further clinical trials on radioprotection of ginseng need to be highly done to clarify its scientific application. The effective components of ginseng has been known as ginsenosides. Considering that each of these ginsenosides has pharmacological effect, it seems likely that non-saponin components might have radioprotective effects superior to those of ginsenosides, suggesting its active ingredients to be non-saponin series. These results also show that the combined effects of saponin and non-saponin components play an important role in the radioprotective effects of ginseng.

Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

  • Oh, Su-Jin;Ryu, Chung-Kyu;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.11 no.6
    • /
    • pp.383-389
    • /
    • 2011
  • Background: EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods: C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of cytokine secretion. Normal myeloid-dendritic cell (DC) was ex vivo cultured from bone marrow hematopoietic stem cells of C57BL/6 mice with GM-CSF and IL-4 to analyze the DC uptake of dead tumor cells and to observe the effect of EY-6 on the normal DC. Results: EY-6 killed the MC38 tumor cells in a dose dependent manner (25, 50 and $100{\mu}M$) with carleticulin induction. And EY-6 induced the secretion of IFN-${\gamma}$ but not of TNF-${\alpha}$ from the MC38 tumor cells. EY-6 did not kill the ex-vivo cultured DCs at the dose killing tumor cells and did slightly but not significantly induced the DC maturation. The OVA-specific cross-presentation ability of DC was not induced by chemical treatment (both MHC II and MHC I-restricted antigen presentation). Conclusion: Data indicate that the EY-6 induced tumor cell specific and immunological cell death by modulation of tumor cell phenotype and cytokine secretion favoring induction of specific immunity eliminating tumor cells.

Suppression of HIF-1α by Valproic Acid Sustains Self-Renewal of Mouse Embryonic Stem Cells under Hypoxia In Vitro

  • Lee, Hyo-Jong;Kim, Kyu-Won
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.280-285
    • /
    • 2012
  • The developing embryo naturally experiences relatively low oxygen conditions in vivo. Under in vitro hypoxia, mouse embryonic stem cells (mESCs) lose their self-renewal activity and display an early differentiated morphology mediated by the hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$). Previously, we demonstrated that histone deacetylase (HDAC) is activated by hypoxia and increases the protein stability and transcriptional activity of HIF-$1{\alpha}$ in many human cancer cells. Furthermore HDAC1 and 3 mediate the differentiation of mECSs and hematopoietic stem cells. However, the role of HDACs and their inhibitors in hypoxia-induced early differentiation of mESCs remains largely unknown. Here, we examined the effects of several histone deacetylase inhibitors (HDACIs) on the self-renewal properties of mESCs under hypoxia. Inhibition of HDAC under hypoxia effectively decreased the HIF-$1{\alpha}$ protein levels and substantially improved the expression of the LIF-specific receptor (LIFR) and phosphorylated-STAT3 in mESCs. In particular, valproic acid (VPA), a pan HDACI, showed dramatic changes in HIF-$1{\alpha}$ protein levels and LIFR protein expression levels compared to other HDACIs, including sodium butyrate (SB), trichostatin A (TSA), and apicidin (AP). Importantly, our RT-PCR data and alkaline phosphatase assays indicate that VPA helps to maintain the self-renewal activity of mESCs under hypoxia. Taken together, these results suggest that VPA may block the early differentiation of mESCs under hypoxia via the destabilization of HIF-$1{\alpha}$.

The Effects of Arsenic Trioxide on Cell Cycle and Apoptosis in Chronic Myelogenous Leukemia Cell Line (만성 골수성 백혈병 세포주에서 As2O3가 세포주기 및 세포고사에 미치는 영향)

  • Shim, Moon-Jung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.2
    • /
    • pp.82-86
    • /
    • 2006
  • Leukemia arises in hematopoietic progenitor cells and is characterized by impaired or blocked differentiation, uncontrolled proliferation and resistance to apoptosis. Molecular mechanisms underlying cellular functions by $As_2O_3$, however, have been poorly investigated. The consensus of several reports is that $As_2O_3$ induces apoptosis in leukemia cells by activating genes for apoptosis. The present study aimed to investigate the effects of $As_2O_3$ on the cell cycle and its morphological change and a relationship between the caspase-3 and $As_2O_3$-induced apoptosis. Caspase-3 is involved in $As_2O_3$-induced apoptosis in K562 cells. In this study, to address whether $As_2O_3$-induced apoptosis is mediated by caspase-3 activity, the same samples were probed with a specific antibody. The pretreatment of $25{\mu}M$ Z-VAD-fmk, a specific inhibitor of caspase, decreased $As_2O_3$-induced cytotoxicity. And $As_2O_3$ significantly increased the percentages of the cells accumulated in the G2/M phase of the cell cycle in a time- and dose-dependent manner. Chromatin condensational changes were observed with Hoechst 33258 staining after treatment of $As_2O_3$. It was shown that $As_2O_3$-induced apoptosis is controlled through caspase-3 activation. These results may provide a useful rationale for CML treatment.

  • PDF