Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.3.171

Identification of a novel circularized transcript of the AML1 gene  

Xu, Ai-Ning (Department of Hematology, The Second Hospital of Shanxi Medical University)
Chen, Xiu-Hua (Department of Hematology, The Second Hospital of Shanxi Medical University)
Tan, Yan-Hong (Department of Hematology, The Second Hospital of Shanxi Medical University)
Qi, Xi-Ling (Department of Hematology, The Second Hospital of Shanxi Medical University)
Xu, Zhi-Fang (Department of Hematology, The Second Hospital of Shanxi Medical University)
Zhang, Lin-Lin (Department of Hematology, The Second Hospital of Shanxi Medical University)
Ren, Fang-Gang (Department of Hematology, The Second Hospital of Shanxi Medical University)
Bian, Si-Cheng (Department of Hematology, The Second Hospital of Shanxi Medical University)
Chen, Yi (Department of Hematology, The Second Hospital of Shanxi Medical University)
Wang, Hong-Wei (Department of Hematology, The Second Hospital of Shanxi Medical University)
Publication Information
BMB Reports / v.46, no.3, 2013 , pp. 163-168 More about this Journal
Abstract
The AML1 gene is an essential transcription factor regulating the differentiation of hematopoietic stem cells into mature blood cells. Though at least 12 different alternatively spliced AML1 mRNAs are generated, three splice variants (AML1a, AML1b and AML1c) have been characterized. Here, using the reverse transcription-polymerase chain reaction with outward-facing primers, we identified a novel non-polyadenylated transcript from the AML1 gene, with exons 5 and 6 scrambled. The novel transcript resisted RNase R digestion, indicating it is a circular RNA structure that may originate from products of mRNA alternative splicing. The expression of the novel transcript in different cells or cell lines of human and a number of other species matched those of the canonical transcripts. The discovery provides additional evidence that circular RNA could stably exist in vivo in human, and may also help to understand the mechanism of the regulation of the AML1 gene transcription.
Keywords
Alternative splicing; Circular RNA; Non-coding RNA; RNase R; The AML1 gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 De Braekeleer, E., Douet-Guilbert, N., Morel, F., Bris, M., Ferec, C. and De Braekeleer, M. (2011) RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncology. 7, 77-91.   DOI   ScienceOn
2 Burd, C. E., Jeck, W. R., Liu, Y., Sanoff, H. K., Wang, Z. and Sharpless, N. E. (2010) Expression of linear and novel circular forms of an INK4/ARF-Associated Non-Coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233.   DOI   ScienceOn
3 Suzuki, H., Zuo, Y., Wang, J,, Zhang, M. Q., Malhotra, A. and Mayeda, A. (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34, e63.   DOI   ScienceOn
4 Miyoshi, H., Ohira, M., Shimizu, K., Mitanil, K., Hirai, H., and Imai, T. (1995) Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. Nucleic Acids Res. 23, 2762-2769.   DOI   ScienceOn
5 Nigro, J., Cho, K., Fearon, E., Kern, S., Ruppert, J. and Oliner, J. (1991) Scrambled exons. Cell 64, 607-613.   DOI   ScienceOn
6 Cocquerelle, C., Daubersies, P., Majerus, M. A., Kerckaert, J. P. and Bailleul, B. (1992) Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 11, 1095-1098.
7 Cocquerelle, C., Mascrez, B., Hetuin, D. and Bailleul, B. (1993) Mis-splicing yields circular RNA molecules. FASEB J. 7, 155-160.
8 Capel, B., Swain, A., Nicolis, S., Hacker, A., Walter, M. and Koopman, P. (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73, 1019-1030.   DOI   ScienceOn
9 Zaphiropoulos, P. G. (1996) Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc. Natl. Acad. Sci. 93, 6536-6541.   DOI
10 Zaphiropoulos, P. G. (1997) Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol. Cell. Biol. 17, 2985-2993.   DOI
11 Surono, A., Takeshima, Y., Wibawa, T., Ikezawa, M., Nonaka, I. and Matsuo, M. (1999) Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum. Mol. Genet. 8, 493-500.   DOI   ScienceOn
12 Gualandi, F., Trabanelli, C., Rimessi, P., Calzolari, E., Toffolatti, L., Patarnello, T., Kunz, G., Muntoni, F. and Ferlini, A. (2003) Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion. J. Med. Genet. 40, e100.   DOI
13 Li, X. F. and Lytton, J. (1999) A circularized sodium-calcium exchanger exon 2 transcript. J. Biol. Chem. 274, 8153-8160.   DOI   ScienceOn
14 Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J. and Kleinschmidt, A. K. (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. 73, 3852-3856.   DOI   ScienceOn
15 Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. and Brown, P. O., (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS ONE 7, e30733.   DOI
16 Takahara, T., Kanazu, S., Yanagisawa, S. and Akanuma, H. (2000) Heterogeneous Sp1 mRNAs in human HepG2 cells include a product of homotypic trans-splicing. J. Biol. Chem. 275, 38067-38072.   DOI   ScienceOn
17 Flouriot, G., Brand, H., Seraphin, B. and Gannon, F. (2002) Natural trans-spliced mRNAs are generated from the human estrogen receptor-${\alpha}$ ($hER{\alpha}$) gene. J. Biol. Chem. 8, 218-222.
18 Axtell, M. J., Westholm, J. O. and Lai, E. C. (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 12, 221.   DOI   ScienceOn
19 Kozak, M. (1989) The scanning model for translation: an update. J. Cell Biol. 108, 229-241.   DOI   ScienceOn
20 Chen, C. Y. and Sarnow, P. (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415-417.   DOI
21 Sachs, A. B. and Davis, R. W. (1989) The poly(A) binding protein is required for poly(A) shortening and 60s ribosomal subunit-dependent translation initiation. Cell 58, 857-867.   DOI   ScienceOn
22 Storzm, G. (2002) An expanding universe of noncoding RNAs. Science 296, 1260-1263.   DOI   ScienceOn