• Title/Summary/Keyword: helix approximation

Search Result 4, Processing Time 0.018 seconds

ERROR ANALYSIS FOR APPROXIMATION OF HELIX BY BI-CONIC AND BI-QUADRATIC BEZIER CURVES

  • Ahn, Young-Joon;Kim, Philsu
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.861-873
    • /
    • 2005
  • In this paper we approximate a cylindrical helix by bi-conic and bi-quadratic Bezier curves. Each approximation method is $G^1$ end-points interpolation of the helix. We present a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We also show that the error bound has the approximation order three and monotone increases as the length of the helix increases. As an illustration we give some numerical examples.

APPROXIMATION OF HELIX BY G2 CUBIC POLYNOMIAL CURVES

  • YOUNG JOON AHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.2
    • /
    • pp.59-70
    • /
    • 2024
  • In this paper we present the approximation method of the circular helix by G2 cubic polynomial curves. The approximants are G1 Hermite interpolation of the circular helix and their approximation order is four. We obtain numerical examples to illustrate the geometric continuity and the approximation order of the approximants. The method presented in this paper can be extended to approximating the elliptical helix. Using the property of affine transformation invariance we show that the approximant has G2 continuity and the approximation order four. The numerical examples are also presented to illustrate our assertions.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

ON CONSTRUCTIONS OF MINIMAL SURFACES

  • Yoon, Dae Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • In the recent papers, S'anchez-Reyes [Appl. Math. Model. 40 (2016), 1676-1682] described the method for finding a minimal surface through a geodesic, and Li et al. [Appl. Math. Model. 37 (2013), 6415-6424] studied the approximation of minimal surfaces with a geodesic from Dirichlet function. In the present article, we consider an isoparametric surface generated by Frenet frame of a curve introduced by Wang et al. [Comput. Aided Des. 36 (2004), 447-459], and give the necessary and sufficient condition to satisfy both geodesic of the curve and minimality of the surface. From this, we construct minimal surfaces in terms of constant curvature and torsion of the curve. As a result, we present a new approach for constructions of the minimal surfaces from a prescribed closed geodesic and unclosed geodesic, and show some new examples of minimal surfaces with a circle and a helix as a geodesic. Our approach can be used in design of minimal surfaces from geodesics.