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ABSTRACT. In this paper we present the approximation method of the circular helix by G2

cubic polynomial curves. The approximants are G1 Hermite interpolation of the circular helix
and their approximation order is four. We obtain numerical examples to illustrate the geomet-
ric continuity and the approximation order of the approximants. The method presented in this
paper can be extended to approximating the elliptical helix. Using the property of affine trans-
formation invariance we show that the approximant has G2 continuity and the approximation
order four. The numerical examples are also presented to illustrate our assertions.

1. INTRODUCTION

Approximation of trigonometric function curves by parametric polynomial curves is an
important task in the fields of CAGD (Computer Aided Geometric Design) and CAD/CAM
[1, 2, 3, 4, 5]. Many methods for circle approximation and several methods for helix approxi-
mation have been developed using geometric Hermite interpolation.

The geometric Hermite interpolation (GHI) has been used to elevate the approximation order
and the order of geometric continuity of approximation curves. For the plane curve, the optimal
approximation order of GHI by polynomial curve of degree n is 2n [6, 7, 8, 9, 10]. The cubic
G2 Hermite interpolation of plane curves has the approximation order six [11]. For circular arcs
and conic sections, Gk+1 approximation by the polynomial curve of odd degree n = 2k+1 has
approximation order 2n [12], and the Chebyshev approximation by the polynomial curve of any
degree n ≥ 2 has also approximation order 2n [13, 14, 15]. A lot of approximation methods
of circular arcs and conic sections by polynomial curves of low degree n with approximation
order 2n have been developed [1, 2, 16, 17, 18, 19].

For spatial curves in R3, the optimal approximation order of GHI by polynomial curve of
degree n is n+ 1 + [(n− 1)/2] [6, 7, 8, 9], where [x] is the greatest integer less than or equal
to x. The cubic G1 Hermite interpolation of spatial curves with interpolating a third point has
the approximation order five [6]. Several methods for helix approximation by rational Bézier
curves have been developed. In these methods [20, 21, 22, 23, 24] the rational approximation
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curves lie on the cylinder containing the helix, which is an important merit on the helix approx-
imation by rational approximants. Mick and Röschel [20] presented G1 Hermite interpolations
of the helix by cubic and quartic rational Bézier curves. The quartic approximant has the same
tangent direction with the helix at the midpoint additionally. Juhász [21] proposed two approx-
imation methods of the helix by cubic rational curves with error estimation. One method is G1

Hermite interpolation and the other is G2 approximation. Seemann [22] obtained the geometric
Hermite interpolation by rational Bézier curves of degrees from four to six, using geometric
conditions at both endpoints and midpoints and using free parameters coming from the de-
gree elevation. Yang [23] achieved high accuracy approximation by quintic rational Bézier and
polynomial curves. The helix approximations by G1 conic and quadratic Bézier curves exist
having the closed-form sharp error bound [24]. It can be proved that their approximation order
is three, which is the optimal order. The circular arc and helix curves have been approximated
by the two-point Taylor polynomial curves [25] and the Maclaurin polynomial curves [26] of
odd degree n.

In this paper the approximation of the circular helix by G2 cubic polynomial curves is pro-
posed. The cubic polynomial curves satisfy G1 Hermite interpolation of the circular helix.
Although the approximant does not have the optimal approximation order, it has G2 continuity
and G1 Hermite interpolation of the circular helix simultaneously. We show that the approx-
imant has the approximation order four. Our method can be extended to approximating the
elliptical helix. Using the affine transformation property, we also show that the approximant
for the elliptical helix has the approximation order four and G2 continuity. For given error
tolerance, our approximation method can find the smallest number of subdivision of the he-
lix with the approximation error less than the tolerance and can yield the cubic polynomial
curves whose curvature vectors are continuous. We present numerical examples to illustrate
our assertions.

The remainder of this paper is constructed as follows. In Section 2, the notions for the
geometric continuity and geometric interpolation are given. The approximation methods of
the circular helix and elliptical helix by G2 cubic polynomial curves are presented and their
properties are analyzed in Sections 3 and 4. We summarize our study in Section 5.

2. PRELIMINARIES

Let c : [t0, t1] → R3 and ĉ : [s0, s1] → R3 be regular curves with c(τ) = ĉ(σ) for some
τ ∈ [t0, t1] and σ ∈ [s0, s1]. Two curves c and ĉ are Gk continuous [27, 28] at c(τ) = ĉ(σ) if
there exists a regular reparameterization ρ : [t0, t1] → [s0, s1] such that ρ′ > 0, ρ(τ) = σ and

djc

dtj
(τ) =

dj(ĉ ◦ ρ)
dtj

(τ), j = 0, 1, . . . , k.

It is well-known [29, 30] that c and ĉ are G2 continuous at a point if and only if they have
common unit tangent and curvature vectors at the point
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Let b : [0, 1] → R3 be a parametric polynomial curve. If there exists a regular bijective
reparameterization ρ : [0, 1] → [t0, t1] with ρ′ > 0, such that

djb

dtj
(t) =

dj(c ◦ ρ)
dtj

(t), j = 0, 1, . . . , k, t = 0, 1,

then we say that b is a Gk Hermite interpolation of c, [31].

3. APPROXIMATION OF CIRCULAR HELIX BY G2 CUBIC POLYNOMIAL CURVE

Let c be the circular helix with the angle α represented by

c(t) = (a cos t, a sin t, ct)T , t ∈ [0, α],

for positive real numbers a, c. Let b be a cubic Bézier curve approximating the circular helix,
and

b(t) =
3∑

i=0

biB
3
i (t),

where bi, i = 0, 1, 2, 3, are control points of b, and B3
i (t) =

3!
i!(3−i)! t

3(1− t)3−i, i = 0, 1, 2, 3,
are cubic Bernstein polynomials. The control points satisfy

b0 = c(0), b1 = c(0) + dc′(0), b2 = c(α)− dc′(α), b3 = c(α), (3.1)

for some positive real number d > 0, if and only if the approximant b is a G1 Hermite inter-
polation of c. We determine the parameter d such that the cubic Bézier approximant has G2

continuity with the consecutive cubic approximant. Let b̂ be the consecutive cubic approx-
imant for the circular helix c defined on the interval [−α, 0]. By the same way, the control
points of b̂ are

b̂0 = c(−α), b̂1 = c(−α) + dc′(−α), b̂2 = c(0)− dc′(0), b̂3 = c(0).

The curvature vector κ of b is

κ(t) =
(b′(t)× b′′(t))× b′(t)

||b′(t)||4
,

[32] and so we have

κ(0) =
2a

3d2(a2 + c2)2

 d sin(α) + cos(α)− 1
c2(d− d cos(α) + sin(α)− α)
−ac(d− d cos(α) + sin(α)− α)

 ,

κ̂(1) =
2a

3d2(a2 + c2)2

 d sin(α) + cos(α)− 1
−c2(d− d cos(α) + sin(α)− α)
ac(d− d cos(α) + sin(α)− α)

 ,

where κ̂ is the curvatures vector of b̂. The two consecutive cubic approximants meet with G2

continuity at the junction if and only if κ(0) = κ̂(1), which is equivalent to

d− d cos(α) + sin(α)− α = 0.
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FIGURE 1. Circular helix c(t) = (cos t, sin t, t)T (blue color), t ∈ [0, 2π],
and its approximation curve b (magenta) with α = π, 2π/3, π/2, from left to
right.

Thus we have the solution d = d1 where

d1 =
α− sinα

1− cosα
. (3.2)

Proposition 3.1. The cubic Hermite interpolation of the circular helix with d = d1 is G2

continuous at both endpoints.

The asymptotic analysis of the G2 cubic approximant is as follows. We consider the arc
length parametrization of c,

c(s) =

(
cos

s√
a2 + c2

, sin
s√

a2 + c2
,

s√
a2 + c2

)T

, s ∈ [0, h], (3.3)

for sufficiently small h > 0. It follows from (3.1) and (3.3) that

∆b0 = (0, ad, cd)T ,

∆b1 = (a cos(h) + ad sin(h)− a, a sin(h)− ad cos(h)− ad, ch− 2cd)T ,

∆b2 = (−ad sin(h), ad cos(h), cd)T ,

∆2b0 = (a cos(h) + ad sin(h)− a, a sin(h)− ad cos(h)− 2ad, ch− 3cd)T , (3.4)

∆2b1 = (−a cos(h)− 2ad sin(h) + a, 2ad cos(h)− a sin(h) + ad, 3cd− ch)T ,

∆3b0 = (−2a cos(h)− 3ad sin(h) + 2a, 3ad cos(h)− 2a sin(h) + 3ad, 6cd− 2ch)T

where ∆kbi = ∆k−1bi+1 −∆k−1bi, k = 1, 2, 3, and i = 0, . . . , 3− k.

Proposition 3.2. The cubic polynomial approximant with d = d1 has the approximation order
four.

Proof. First, we aim to show that the approximation order is at least four. Since b is a G1

Hermite interpolation of c, applying Newton’s remainder formula for polynomial interpolation,
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FIGURE 2. Curvature vector curves of the approximation b with α = π,
2π/3, π/2, from left to right, for the circular helix c(t) = (cos t, sin t, t)T ,
t ∈ [0, 2π]. The curvature vector curves are plotted using different colors for
each segment.

it is sufficient to show that

||b′(t)|| = ωh+O(h2), b(k)(t) = O(hk) for k ≥ 2,

for some constant ω > 0. Eq. (3.2) yields

d1 =
1

3
h+

1

90
h3 +O(h5). (3.5)

It follows from (3.4) and (3.5) that

∆bi =
ah

3
(0, 1, 1)T +O(h2), i = 0, 1, 2,

∆2bi = −ah2

6
(1, 0, 0)T +O(h3), i = 0, 1,

∆3b0 = h3(0,− a

10
,
c

15
)T +O(h4).

Thus ||b′(t)|| =
√
2ah/3 +O(h2), and b(k)(t) = O(hk) for k = 2, 3. Note that b(k)(t) = 0

for k ≥ 4, since b is a cubic polynomial curve. Hence the accuracy of the G2 cubic approxi-
mant with d = d1 is O(h4).

On the other hand, it follows from

||Pxyb(1/2)|| − a =
a

4

3h/2 + sin(h)/2− 4 sin(h/2)

sin(h/2)
> 0, (3.6)

that the midpoint b(1/2) lies outside of the cylinder C containing the circular helix. Here,
Pxy is the orthogonal projection from R3 onto the xy-plane. The inequality in (3.6) holds for
the following reason. A function g : [0,∞) → R is defined by g(h) = 3h/2 + sin(h)/2 −
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α dH(c,b) decreasing ratio
π 1.781× 10−1

π/2 9.817× 10−3 4.181
π/4 5.990× 10−4 4.035
π/8 3.723× 10−5 4.008
π/16 2.323× 10−6 4.002
π/32 1.452× 10−7 4.000
π/64 9.072× 10−9 4.000
π/128 5.670× 10−10 4.000
π/256 3.574× 10−11 3.988

TABLE 1. Hausdorff distance dH(c,b) between the circular helix c(t) =
(cos t, sin t, t)T on the interval [0, π/2j ], j = 0, 1, . . . , 8, and its cubic ap-
proximant b.

4 sin(h/2). Since

g′(h) =
3

2
+

1

2
cosh− 2 cos

h

2
= (1− cos

h

2
)2,

g(0) = g′(0) = 0, and g′(h) > 0 for all h > 0 except for h = 4nπ, n ∈ N, we have g(h) > 0
for all h > 0. Let dC(x) be the shortest distance from the point x ∈ R3 to the cylinder C.
Since the Hausdorff distance dH(c,b) between c and b satisfies

dH(c,b) ≥ dC(b(1/2)) = ||Pxyb(1/2)|| − a =
a

640
h4 +O(h6),

the approximation order of the G2 cubic approximant is four. □

As a numerical example, we consider the circular helix c(t) = (cos t, sin t, t)T , t ∈ [0, 2π] .
The Hausdorff distances dH(c,b) between c(t) on the interval [0, π/2j ] and its cubic approx-
imant b are obtained and listed in Table 1. We can see that all decreasing ratios are closed to
four, which is the approximation order.

For given error tolerance, if the approximation error is lager than the tolerance, then sub-
divisions are required. Our method subdivides the circular helix by the same angle so that all
segments of the circular helix are congruent. Thus it is easy to find the smallest number of
subdivision to obtain the cubic approximant having the error less than the tolerance. For the
given tolerance TOL, the smallest number of subdivision is the positive integer n satisfying

dH(c α
n+1

,bn+1) < TOL ≤ dH(cα
n
,bn), (3.7)

where cα
n

is the circular helix defined on the interval [0, α/n] and bn is its cubic approximant.
In this case, the number of subdivided segments is n+ 1. The smallest numbers of subdivided
segments of the circular helix c having the approximation error less than the tolerances TOL =
10−1, 10−2, . . . , 10−5, are obtained in Table 2.

In Figure 1, the circular helix c (blue color) is subdivided into two, three, and four segments,
respectively, and then each segment is approximated by cubic polynomial curve (magenta).
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TOL number of subdivided segments
10−1 3
10−2 4
10−3 8
10−4 13
10−5 23

TABLE 2. Smallest number of subdivided segments of the circular helix
c(t) = (cos t, sin t, t)T of angle α = 2π whose approximation error is less
than the tolerance.

The composite cubic polynomial curves approximating c are G2 continuous. The curvature
vectors κ of cubic polynomial curves are plotted by different colors, as shown in Figure 2. It is
observed that the curvature vectors are continuous, which illustrates Proposition 3.1. Note that
all curvature vectors κ of cubic polynomial curves are congruent, since all subdivided circular
helix segments with the same angle are congruent. Since the circular helix c is obtained by a
translation of the circular helix c(t), t ∈ [2π, 4π], the curvature vector κ of the composite cubic
polynomial curves approximating c is a closed curve, as shown in Figure 2.

4. APPROXIMATION OF ELLIPTICAL HELIX BY G2 CUBIC POLYNOMIAL CURVE

In this section the elliptical helix is approximated by the G2 cubic Bézier curve which is G1

Hermite interpolation of the elliptical helix. The elliptical helix e is represented [33, 34] by

e(t) = (a cos(t0 + t), b sin(t0 + t), ct)T , t ∈ [0, α],

for some real number t0. The curve e can be obtained by an affine transformation A of the
circular helix such as e(t) = Ac(t), where

A =

cos t0 − b
a sin t0 0

sin t0
b
a cos t0 0

0 0 1

 .

A cubic Bézier curve p is G1 Hermite interpolation of e if its control points satisfy

p0 = e(0), p1 = e(0) + d1e
′(0), p2 = e(α)− d1e

′(α), p3 = e(α), (4.1)

where d1 is defined in (3.2). Then, p can be also obtained from the affine transformation A of
the approximant b, i.e.,

p(t) = Ab(t).

It is well known that the parametric and geometric continuity are invariant under affine trans-
formations [12]. Thus the following proposition holds.

Proposition 4.1. The cubic Bézier curve p with the control points in (4.1) has G2 continuity.

Using properties of affine transformation, we can see that the approximant p has the approx-
imation order four.
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FIGURE 3. Elliptical helix e(t) = (3 cos t, 2 sin t, t)T (blue color), t ∈
[0, 2π], and its approximation curve p (magenta) with α = π, 2π/3, π/2,
from left to right.

FIGURE 4. Curvature vector curves of the approximation p with α = π,
2π/3, π/2, from left to right, for the elliptical helix e(t) = (3 cos t, 2 sin t, t)T ,
t ∈ [0, 2π]. The curvature vector curves are plotted using different colors for
each segments.

Proposition 4.2. The cubic polynomial approximant p of the elliptical helix e has the approx-
imation order four.

Proof. Since A is an affine transformation satisfying e = Ac and p = Ab,

dH(e,p) ≤ ||A||dH(c,b), (4.2)

where
||A|| = sup{||Ax|| : ||x|| = 1,x ∈ R3}.

It follows from ||A|| = max{1, b/a} that dH(e,p) = O(h4) for sufficiently small h > 0.
On the other hand, by the affine transformation A, the midpoint p(1/2) also lies outside of

the cylinder E containing the elliptical helix e. Let dE(x) be the shortest distance from the
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α dH(e,p) decreasing ratio
π 3.562× 10−1

π/2 2.367× 10−2 3.911
π/4 1.668× 10−3 3.827
π/8 1.094× 10−4 3.931
π/16 6.933× 10−6 3.980
π/32 4.349× 10−7 3.995
π/64 2.721× 10−8 3.999
π/128 1.701× 10−9 4.000
π/256 1.063× 10−10 4.000

TABLE 3. Hausdorff distance dH(e,p) between the elliptical helix e(t) =
(3 cos t, 2 sin t, t)T on the interval [0, π/2j ], j = 0, 1, . . . , 8, and its cubic
approximant p.

point x ∈ R3 to E. If b ≥ a, then

dE(p(1/2)) ≥ dC(b(1/2)),

and if b < a, then

dE(p(1/2)) ≥
b

a
dC(b(1/2)).

Thus we have

dE(p(1/2)) ≥ min{1, b
a
}dC(b(1/2)).

Since

dH(e,p) ≥ dE(p(1/2)) ≥ min{1, b
a
} a

640
h4 +O(h6),

the approximant p has the approximation order four. □

We consider the elliptical helix e(t) = (3 cos t, 2 sin t, t)T , t ∈ [0, 2π], as a numerical
example. The Hausdorff distances dH(e,p) between e(t) on the interval [0, π/2j ] and its
cubic approximant p are obtained and listed in Table 3, and thus it illustrates Proposition 4.2.

For given tolerance, our method subdivides the elliptical helix by the same angle when the
subdivision is needed. The subdivided segments of the elliptical helix are not congruent in
general. For the fast calculation, we use the upper bound of the Hausdorff distance dH(e,p)
in (4.2). Hence it is easy to find the smallest number of subdivision to obtain the cubic ap-
proximant having the error bound less than the tolerance using (3.7). If a < b, we can use the
upper bound in (4.2) by the interchange of a and b. Using this method, the smallest numbers
of subdivided segments of the elliptical helix e having the approximation error bound less than
the tolerances can be obtained, as shown in Table 4.

In Figure 3, the elliptical helix e (blue color) is subdivided into two, three, and four seg-
ments, respectively, and then each segment is approximated by cubic polynomial curve (ma-
genta). The composite cubic polynomial curves approximating e are G2 continuous. In Figure
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TOL number of subdivided segments
10−1 3
10−2 6
10−3 10
10−4 17
10−5 30

TABLE 4. Smallest number of subdivided segments of the elliptical helix
e(t) = (3 cos t, 2 sin t, t)T of angle α = 2π whose approximation error bound
is less than the tolerance.

4, the curvature vectors κ of cubic polynomial curves are plotted by different colors. It is ob-
served that the curvature vectors are continuous, which illustrates Proposition 4.1. Note that
the curvature vectors of approximant segments are not congruent in general, since the subdi-
vided segments of the elliptical helix are not congruent. By the same reason as in the circular
helix case, the curvature vector κ of the composite cubic polynomial curves approximating e
is a closed curve, as shown in Figure 4.

5. CONCLUSION

In this paper we presented the approximation method of the circular helix by G2 cubic
polynomial curves. The cubic polynomial curves are also G1 Hermite interpolation of the
circular helix. We showed that there exists uniquely one cubic polynomial curve satisfying
G2 continuity and G1 Hermite interpolation of the circular helix. We also showed that the
approximant has the approximation order four. Our method can be extended to approximating
the elliptical helix. Using the affine transformation property, we proved that the approximant
for the elliptical helix has the G2 continuity and the approximation order four.
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14:475–490, 1997.
[23] X. Yang. High accuracy approximation of helices by quintic curves. Comput. Aided Geom. Design, 20:303–

317, 2003.
[24] Y. J. Ahn. Helix approximation with conic and qadratic Bézier curves. Comput. Aided Geom. Design, 22:551–

565, 2005.
[25] L. Lu. On polynomial approximation of circular arcs and helices. Comput. Math. Appl., 63:1192–1196, 2012.
[26] S. Kilicoglu. On approximation of helix by 3rd, 5th and 7th order Bézier curves in E3. Thermal Science,
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[31] A. Vavpetič and E. Žagar. A general framework for the optimal approximation of circular arcs by parametric
polynomial curves. J. Comput. Appl. Math., 345:146–158, 2019.

[32] R. Herzog and P. Blanc. Optimal G2 Hermite interpolation for 3D curves. Comput.-Aided Design, 117:102752,
2019.

[33] Y. A. H. Louie, R. L. Somorjai, and A. Klug. Differential geometry of proteins: helical approximations.
Journal of Molecular Biology, 168(1):143–162, 1983.

[34] D. Fuchs, I. Izmestiev, M. Raffaelli, G. Szewieczek, and S. Tabachnikov. Differential geometry of space
curves: forgotten chapters. The Mathematical Intelligencer, 120:1–13, 2023.


