• Title/Summary/Keyword: helicase

Search Result 105, Processing Time 0.021 seconds

A case of CHARGE syndrome featuring immunodeficiency and hypocalcemia

  • Son, Yu Yun;Lee, Byeonghyeon;Suh, Chae-Ri;Nam, Hyo-Kyoung;Lee, Jung Hwa;Hong, Young Sook;Lee, Joo Won
    • Journal of Genetic Medicine
    • /
    • v.12 no.1
    • /
    • pp.57-60
    • /
    • 2015
  • CHARGE syndrome (coloboma, heart defects, atresia choanae, retarded growth and development, genital hypoplasia, and ear abnormalities) is characterized by multiple malformations and is diagnosed using distinct consensus criteria. Mutations in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7) are the major cause of CHARGE syndrome. Clinical features of CHARGE syndrome considerably overlap those of 22q11.2 deletion syndrome. Of these features, immunodeficiency and hypocalcemia are frequently reported in patients with 22q11.2 deletion syndrome but are rarely reported in patients with CHARGE syndrome. In this report, we have described the case of a patient with typical phenotypes of 22q11.2 deletion syndrome but without the proven chromosome microdeletion. Mutation analysis of CHD7 identified a pathogenic mutation (c.2238+1G>A) in this patient. To our knowledge, this is the first case of CHARGE syndrome with immunodeficiency and hypocalcemia in Korea. Our observations suggest that mutation analysis of CHD7 should be performed for patients showing the typical phenotypes of 22q11.2 deletion syndrome but lacking the proven chromosome microdeletion.

OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages

  • Lee, Wook-Bin;Choi, Won Young;Lee, Dong-Hyun;Shim, Hyeran;KimHa, Jeongsil;Kim, Young-Joon
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.133-138
    • /
    • 2019
  • Upon viral infection, the 2', 5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNaseL) system works to cleave viral RNA, thereby blocking viral replication. However, it is unclear whether OAS proteins have a role in regulating gene expression. Here, we show that OAS1 and OAS3 act as negative regulators of the expression of chemokines and interferon-responsive genes in human macrophages. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) technology was used to engineer human myeloid cell lines in which the OAS1 or OAS3 gene was deleted. Neither OAS1 nor OAS3 was exclusively responsible for the degradation of rRNA in macrophages stimulated with poly(I:C), a synthetic surrogate for viral double-stranded (ds)RNA. An mRNA sequencing analysis revealed that genes related to type I interferon signaling and chemokine activity were increased in $OAS1^{-/-}$ and $OAS3^{-/-}$ macrophages treated with intracellular poly(I:C). Indeed, retinoic-acid-inducible gene (RIG)-I- and interferon-induced helicase C domain-containing protein (IFIH1 or MDA5)-mediated induction of chemokines and interferon-stimulated genes was regulated by OAS3, but Toll-like receptor 3 (TLR3)- and TLR4-mediated induction of those genes was modulated by OAS1 in macrophages. However, stimulation of these cells with type I interferons had no effect on OAS1- or OAS3-mediated chemokine secretion. These data suggest that OAS1 and OAS3 negatively regulate the expression of chemokines and interferon-responsive genes in human macrophages.

Full-Length Infectious Clones of Two New Isolates of Tomato Mosaic Virus Induce Distinct Symptoms Associated with Two Differential Amino Acid Residues in 128-kDa Protein

  • Choi, Go-Woon;Oh, June-Pyo;Cho, In-Sook;Ju, Hye-Kyoung;Hu, Wen-Xing;Kim, Boram;Seo, Eun-Young;Park, Jong-Seok;Domier, Leslie L;Hammond, John;Song, Kihak;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.538-542
    • /
    • 2019
  • In 2017, two new tomato mosaic virus (ToMV) isolates were collected from greenhouses in Buyeo, Chungcheongnam-do, South Korea. Full-length cDNAs of the new ToMV isolates were cloned into dual cauliflower mosaic virus 35S and T7 promoter-driven vectors, sequenced and their pathogenicities investigated. The nucleotide sequences of isolates GW1 (MH507165) and GW2 (MH507166) were 99% identical, resulting in only two amino acid differences in nonconserved region II and the helicase domain, Ile668Thr and Val834Ile. The two isolates were most closely related to a ToMV isolate from Taiwan (KJ207374). Isolate GW1 (Ile668, Val834) induced a systemic hypersensitive response in Nicotiana benthamiana compared with the isolate GW2, which a single residue substitution showed was due to Val834.

Genomic Analysis of 13 Putative Active Prophages Located in the Genomes of Walnut Blight Pathogen Xanthomonas arboricola pv. juglandis

  • Cao, Zheng;Cuiying, Du;Benzhong, Fu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.563-573
    • /
    • 2022
  • Xanthomonas arboricola pv. juglandis (Xaj) is a globally important bacterial pathogen of walnut trees that causes substantial economic losses in commercial walnut production. Although prophages are common in bacterial plant pathogens and play important roles in bacterial diversity and pathogenicity, there has been limited investigation into the distribution and function of prophages in Xaj. In this study, we identified and characterized 13 predicted prophages from the genomes of 12 Xaj isolates from around the globe. These prophages ranged in length from 11.8 kb to 51.9 kb, with between 11-75 genes and 57.82-64.15% GC content. The closest relatives of these prophages belong to the Myoviridae and Siphoviridae families of the Caudovirales order. The phylogenetic analysis allowed the classification of the prophages into five groups. The gene constitution of these predicted prophages was revealed via Roary analysis. Amongst 126 total protein groups, the most prevalent group was only present in nine prophages, and 22 protein groups were present in only one prophage (singletons). Also, bioinformatic analysis of the 13 identified prophages revealed the presence of 431 genes with an average length of 389.7 bp. Prokka annotation of these prophages identified 466 hypothetical proteins, 24 proteins with known function, and six tRNA genes. The proteins with known function mainly comprised prophage integrase IntA, replicative DNA helicase, tyrosine recombinase XerC, and IS3 family transposase. There was no detectable insertion site specificity for these prophages in the Xaj genomes. The identified Xaj prophage genes, particularly those of unknown function, merit future investigation.

Comparative Genomic Analysis and Rapid Molecular Detection of Xanthomonas euvesicatoria Using Unique ATP-Dependent DNA Helicase recQ, hrpB1, and hrpB2 Genes Isolated from Physalis pubescens in China

  • Faisal Siddique;Yang Mingxiu;Xu Xiaofeng;Ni Zhe;Haseeb Younis;Peng Lili;Zhang Junhua
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.191-206
    • /
    • 2023
  • Ground cherry (Physalis pubescens) is the most prominent species in the Solanaceae family due to its nutritional content, and prospective health advantages. It is grown all over the world, but notably in northern China. In 2019 firstly bacterial leaf spot (BLS) disease was identified on P. pubescens in China that caused by both BLS pathogens Xanthomonas euvesicatoria pv. euvesicatoria resulted in substantial monetary losses. Here, we compared whole genome sequences of X. euvesicatoria to other Xanthomonas species that caused BLS diseases for high similarities and dissimilarities in genomic sequences through average nucleotide identity (ANI) and BLAST comparison. Molecular techniques and phylogenetic trees were adopted to detect X. euvesicatoria on P. pubescens using recQ, hrpB1, and hrpB2 genes for efficient and precise identification. For rapid molecular detection of X. euvesicatoria, loop-mediated isothermal amplification, polymerase chain reaction (PCR), and real-time PCR techniques were used. Whole genome comparison results showed that the genome of X. euvesicatoria was more closely relative to X. perforans than X. vesicatoria, and X. gardneri with 98%, 84%, and 86% ANI, respectively. All infected leaves of P. pubescens found positive amplification, and negative controls did not show amplification. The findings of evolutionary history revealed that isolated strains XeC10RQ, XeH9RQ, XeA10RQ, and XeB10RQ that originated from China were closely relative and highly homologous to the X. euvesicatoria. This research provides information to researchers on genomic variation in BLS pathogens, and further molecular evolution and identification of X. euvesicatoria using the unique target recQ gene through advance molecular approaches.

Polymorphisms and expression levels of TNP2, SYCP3, and AZFa genes in patients with azoospermia

  • Mohammad Ismael Ibrahim Jebur;Narges Dastmalchi;Parisa Banamolaei;Reza Safaralizadeh
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.253-261
    • /
    • 2023
  • Objective: Azoospermia (the total absence of sperm in the ejaculate) affects approximately 10% of infertile males. Despite diagnostic advances, azoospermia remains the most challenging issue associated with infertility treatment. Our study evaluated transition nuclear protein 2 (TNP2) and synaptonemal complex protein 3 (SYCP3) polymorphisms, azoospermia factor a (AZFa) microdeletion, and gene expression levels in 100 patients with azoospermia. Methods: We investigated a TNP2 single-nucleotide polymorphism through polymerase chain reaction (PCR) restriction fragment length polymorphism analysis using a particular endonuclease. An allele-specific PCR assay for SYCP3 was performed utilizing two forward primers and a common reverse primer in two PCR reactions. Based on the European Academy of Andrology guidelines, AZFa microdeletions were evaluated by multiplex PCR. TNP2, SYCP3, and the AZFa region main gene (DEAD-box helicase 3 and Y-linked [DDX3Y]) expression levels were assessed via quantitative PCR, and receiver operating characteristic curve analysis was used to determine the diagnostic capability of these genes. Results: The TNP2 genotyping and allelic frequency in infertile males did not differ significantly from fertile volunteers. In participants with azoospermia, the allelic frequency of the SYCP3 mutant allele (C allele) was significantly altered. Deletion of sY84 and sY86 was discovered in patients with azoospermia and oligozoospermia. Moreover, SYCP3 and DDX3Y showed decreased expression levels in the azoospermia group, and they exhibited potential as biomarkers for diagnosing azoospermia (area under the curve, 0.722 and 0.720, respectively). Conclusion: These results suggest that reduced SYCP3 and DDX3Y mRNA expression profiles in testicular tissue are associated with a higher likelihood of retrieving spermatozoa in individuals with azoospermia. The homozygous genotype TT of the SYCP3 polymorphism was significantly associated with azoospermia.

Five Genes Regulated by Oryctes rhinoceros nudivirus Infection in the Intestinal Tube of Allomyrina dichotoma (장수풍뎅이(Allomyrina dichotoma)에 Oryctes rhinoceros nudivirus 감염에 의해서 유전자 발현이 조절되는 5개의 유전자)

  • Yoo, Bo-Kyung;Kwon, Kisang;Ko, Young Hwa;Lee, Eun Ryeong;Choi, Ji-Young;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1336-1340
    • /
    • 2016
  • Korean rhinoceros beetles (Allomyrina dichotoma), which can be found in broad-leaved forests in mountainous habitats and lives for around one year in wild. This beetle is currently popular as a pet and traditionally regarded as a medicine for liver-related diseases in Korea. It is reported that the economic losses in the mass-rearing facilities by virus infection have been increased since the 2010s in Korea. The causing virus for the A. dichotoma was firstly reported as an Oryctes rhinoceros nudivirus (OrNV) in 2015. We, here, observes that serious morphological changes in the intestinal tube from the OrNV-infected beetles, and report five genes, which are regulated by OrNV infection in the intestine; Krueppel-like factor 15 (Klf15), Endoplasmic reticulum aminopeptidase 2 (ERAP2), U5 small nuclear ribonucleoprotein 200 kDa helicase (Snrnp200), Muscleblind-like protein 2a (mbnl2a), and MIMI_L93. The results may provide a clue to the early diagnosis and disease treatment during the mass-rearing facilities of the A. dichotoma.

The Study on the Sexual Difference in the Cause and the Time of Casualty and in the Size of the Fairy Pitta (Pitta nympha) through DNA Analysis in Republic of Korea (DNA 분석에 의한 팔색조의 암수 구분 및 암수별 피해 현황 그리고 크기 차이에 관한 연구)

  • Kim, Eun-Mi;Jeon, Yeon-Seon;Jeong, Gil-Sang;Kim, Se-Jae;Kang, Chang-Wan;Oh, Mi-Rea;Noh, Pu-Reum;Won, Hyun-Kyu
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1447-1453
    • /
    • 2014
  • The differentiation of sex is important for species preservation. However, Fairy Pitta is sexually monomorphic and sex of an individual is indistinguishable with its external characteristics. We determined the sex of Fairy Pitta through DNA analysis and investigated the causes and time of injury and mortality and the size based on sex. We collected 21 samples at Jeju Island, Korean Peninsula from 2004 to 2013 and extracted DNA from them and amplified chromo helicase DNA-binding gene from Z and W chromosomes through Polymerase Chain Reaction (PCR). We confirmed their sex with the banding pattern through Agarose gel electrophoresis, i.e. male (ZZ): one banded and female (ZW) two banded. We distinguished the sex of 17 of 21 samples resulting in 9 males and 8 females. Most casualties were recorded in adult of both sexes. Causes of injury and mortality proved that female casualties occurred from window strikes, dehydration, car accident, predation by natural enemies, and male occurred from window strikes, car accident and dehydration. The time of injury and mortality in adults differ by sex. There was no difference between sexes in any of the six size parameters. As the time of injury and mortality differ by sex, the survey on the role and ecological nature by sex in breeding season must be carried out in the future. External measurements may not be reliable for sexing of Fairy Pitta and other traits such as vocal or characteristics are required to identify the sex of individuals in the field.

Study on Expression and Characterization of HRD3 Gene Related DNA Repair from Eukaryotic Cells (진핵세포에서 DNA 회복에 관련된 HRD3 유전자의 분리, 발현 및 특성 연구)

  • Shin, Su-Hwa;Park, In-Soon
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.325-330
    • /
    • 2004
  • The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA-RNA helicase activities. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, the RAD3 homolog gene was isolated by screening of genomic DNA library. The isolated gene was designated as HRD3 (Homologue of RAD3 gene). The over-expressed HRD3 protein was estimated to be a 75 kDa in size which is in good agreement with the estimated by the nucleotide sequence of the cloned gene. Two-dimensional gel electrophoresis showed that a number of other protein spots dramatically disappeared when the HRD3 protein was overexpressed. The overexpressed RAD3 protein showed a toxicity in E. coli host, suggesting that this protein may be involved in the inhibition of protein synthesis and/or degradation of host protein. To determine which part of HRD3 gene contributes to the toxicity in E. coli, various fusion plasmids containing a partial sequence of HRD3 and lac'Z gene were constructed. These results suggest that the C-terminal domain of HRD3 protein may be important for both toxic effect in E. coli and for its role in DNA repair in S. pombe.

In Silico Analysis of Gene Function and Transcriptional Regulators Associated with Endoplasmic Recticulum (ER) Stress (Endoplasmic recticulum stress와 관련된 유전자기능과 전사조절인자의 In silico 분석)

  • Kim, Tae-Min;Yeo, Ji-Young;Park, Chan-Sun;Rhee, Moon-Soo;Jung, Myeong-Ho
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2009
  • It has been postulated that endoplasmic (ER) stress is involved in the development of several diseases. However, the detailed molecular mechanisms have not been fully understood. Therefore, we characterized a genetic network of genes induced by ER stress using cDNA microarray and gene set expression coherence analysis (GSECA), and identified gene function as well as several transcription regulators associated with ER stress. We analyzed time-dependent gene expression profiles in thapsigargin-treated Sk-Hep1 using an oligonucleotide expression chip, and then selected functional gene sets with significantly high expression coherence which was processed into functional clusters according to the expression similarities. The functions related to sugar binding, lysosome, ribosomal protein, ER lumen, and ER to golgi transport increased, whereas the functions with mRNA processing, DNA replication, DNA repair, cell cycle, electron transport chain and helicase activity decreased. Furthermore, functional clusters were investigated for the enrichment of regulatory motifs using GSECA, and several transcriptional regulators associated with regulation of ER-induced gene expression were found.