• Title/Summary/Keyword: helical flow

Search Result 167, Processing Time 0.021 seconds

Flow Analyses in the Bifurcated Duct with PIV System and Computer Simulation (입자영상유속계와 컴퓨터 시뮬레이션을 이용한 분기관내 유동해석)

  • Sub, Sang-Ho;Choi, Yul;Roh, Hyung-Woon;Doh, Deog-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.123-130
    • /
    • 1999
  • The objective of the current study is to understand steady 3-dimensional flow phenomena in a bifurcated duct experimentally. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. The gray level cross-correlation method is applied to the image processing algorithm. The subpixel and the area interpolation methods are used to obtain the final velocity vectors. The finite volume predictions are used to analyze the flow patterns in the bifurcation model. The results of the computer simulation and the PIV experiment for three-dimensional flow show the recirculation zone and the formation of the paired secondary flow distal to the apex of the bifurcation model. The results obtained with the two methods also show that the branch flow strongly strikes the inner wall due to the inertial effect and accompanied helical motion as it flows toward the outer wall.

An Experimental Study on the Characteristics of the In-cylinder Eccentricity Swirl Flow with Intake Port Shapes in a 4 Valve Diesel Engine (4밸브 디젤기관의 흡기포트 형상에 따른 실린더 내 편심 선회유동 특성에 관한 실험적 연구)

  • 이지근;김덕진;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.59-72
    • /
    • 1998
  • This experimental study was carried out to investigate the characteristics of the in-cylinder eccentricity swirl flow generated by a 4 valve cylinder head with a tangential and a helical intake port. the measurements of the in-cylinder velocity field have been made by a two-channel LDA system. The mean flow coefficient(Cf(meam)), swirl ratio(Rs) and mass flowrate with valve eccentricity ratios and an intake port partition between the two intake ports were measured in the steady flow test fig using the ISM(impulse swirl meter). The experimental results indicated that the mass flowrate through the tangential intake port was 19% and 7.7% more than that of the helical intake port in case of with and without intake port partition respectively. There was a tendency to be a single rotation flow in swirl flow fields formed by a 4 valve cylinder head because of the interaction between the two intake ports. As the intake port partition was not set between flow coefficient(Cf(mean)) was 7.35%.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

Heat Transfer Characteristics of Inclined Helical Coil Type Heat Exchanger (경사진 헬리컬 코일 열교환기의 열전달 특성에 관한 연구)

  • Son, Chang-Hyo;Jeon, Min-Ju;Jang, Seong-Il;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.707-714
    • /
    • 2007
  • The heat transfer coefficient and Pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45mm inner diameter. The refrigerant mass fluxes were varied from 200 to $600[kg/m^2s]$ and the inlet Pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increases with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those Predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However, at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al. correlation. Therefore. various experiments in the inclined helical coil tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in the inclined helical coil tubes.

Numerical Investigation of the Flow and Mixing Characteristics with the Static Mixer in a Catalytic Combustor for the MCFC Power Plant System (MCFC 발전시스템 적용 촉매연소기의 혼합 특성 향상을 위한 Static Mixer의 유동에 관한 수치적 연구)

  • Kim, Chong-Min;Park, Nam-Seob;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 2009
  • In this work a numerical study to find the characteristics of the internal flow and mixing process has been conducted in a static mixer used in the system of catalytic combustor of the fuel cell power plant. After introducing the model description and final governing equations the present numerical approach is applied to the analysis of static mixer, which may have one or more helical elements inside the circular tube by changing such various parameters as incoming mass flow rates and the number of helical elements. The results show that although the static mixer is efficient in mixing fuel and air, more optimization processes are required to achieve the appropriate mixing characteristics in front of the honeycomb type catalytic combustor used in the MCFC power plant

Analysis of Pumping Performance of a Helical Drag Pump Using the Diffusion Equation (확산방정식을 이용한 헬리컬 드래그펌프의 성능해석)

  • Heo, Joong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.382-391
    • /
    • 2008
  • A simple analytical model of rarefied channel flow is developed to predict the compression ratio in a helical drag pump. If the surface velocity is zero, the model reduces to a capillary leaks. Predictions of our model agree well with the Knudsen's data for capillary leaks in transition flow, in addition to giving a good account of the Knudsen minimum. Also, the present results are compared with experimental data, and good agreement is obtained over the entire pressure range from molecular to slip flow.

A Study on the Helical Flow of Newtonian and non-Newtonian fluid (뉴튼 및 비뉴튼 유체의 헬리컬 유동에 관한 연구)

  • Kim Young-Ju;Kim Chul-Soo;Hwang Young-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2005
  • This study concerns the characteristics of helical flow in a concentric and eccentric annulus with a diameter ratio of 0.52 and 0.9, whose outer cylinders are stationary and inner ones are rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and $0.2\%$ aqueous of sodium carboxymethyl cellulose(CMC), respectively, when the inner cylinder rotates at the speed of $0\~500$ rpm. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. In all flow regimes, the skin friction coefficient is increased by the inner cylinder rotation. This study shows the change of skin friction coefficient and wall shear stress corresponding to the variation of rotating speed of the inner cylinder, radius ratio, eccentricity, and working fluids.

A Study of Hydraulic Turbine Design for The Discharge Water Energy Harvesting (방출 수 에너지 하베스팅을 위한 수차 설계에 관한 연구)

  • Cheong, Han Seok;Kim, Chung Hyeok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.78-83
    • /
    • 2021
  • We modeled the helical turbine and three modified helical turbines for the structure of the hydraulic turbine for discharge water energy harvesting. A structure that can reduce the load applied to the blade by placing a center plate is our basic concept. The shape was reduced to 1/5, fixed to a size of 240 mm in height and 247 mm in diameter, and modeled by changing the width and the angle of the hydraulic turbine blade. The pipe inner diameter of the simulation pipeline equipment is 309.5 mm, and the simulation section was 4 m in the entire section. The flow velocity was measured for two cases, 1.82 m/s and 2.51 m/s, with the parameters being the amount of power generation, hydraulic turbine's torque, and hydraulic turbine's rotation speed. The measurement results confirmed that the flow velocity at the center, which has no pipe surface resistance, has a great influence on the amount of power generation; therefore, the friction area of the turbine blade should be increased in the center area. In addition, if the center plate is placed on the helical turbine, durability can be improved as it reduces the stress on the blade.

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (1) - Velocity Distribution (1) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (1) - 유속분포 (1))

  • Kim, Hyeongsig;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.417-427
    • /
    • 2016
  • This paper is the first investigation of the steady flow characteristics of an SI engine with a semi-wedge combustion chamber as a function of the port shape. For this purpose, the planar velocity profiles were measured at the 1.75B position by particle image velocimetry. The flow patterns were examined with both a straight and a helical port. Two swirls were observed up to 4 mm valve lift with the straight port and up to 2 mm with the helical one; however, only one swirl was present after these lifts. The flow characteristics changed suddenly between 4 and 5 mm lift in the straight port; on the other hand, the change with lift was gradual with the helical port - the transition points between flow regimes were different with the port shapes. In addition, the centers of the swirls were relatively far from the cylinder center so that the effect of eccentricity may not be negligible at 1.75B, regardless the shape. The eccentricity values with the straight port were especially high - over 0.5 for all lifts. Finally, real velocities were found to be much lower than those predicted by the assumption of ISM evaluation, with the profiles differing qualitatively as well.

The Increase in Regression Rate due to Helical Grain in Solid Fuel of Hybrid Rocket (나선형 홈에 의한 하이브리드 로켓 고체연료의 연소율 증가 특성)

  • Hwang, Yeong-Chun;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.59-66
    • /
    • 2006
  • To understand the role of helical geometry on the regression rate enhancement, two competing underlying mechanisms such as turbulence enhancement and swirling motion production were studied by numerical calculations. Experimental results showed that the enhancement of heat transfer rate has the very close relation to the increase in regression rate even though the percentage of increase in heat transfer rate is different from that in regression rate. This discrepancy is presumably due to the change of turbulent flow feature caused by so-called "blowing mass flux" from the fuel surface. In this regard, the results of RANS calculation show that the blowing velocity is responsible for the reduction of the swirl generation and the increase in the turbulent kinetic energy. And the dominancy of one of the mechanisms causes the increase in the regression rate. Meanwhile, the increase in turbulent kinetic energy due to the mixing of blowing flow and free stream flow does not contribute for the enhancement of the heat transfer rate to the surface because the blowing flow pushes boundary layer away from the solid surface.