• Title/Summary/Keyword: heavy weight concrete

Search Result 107, Processing Time 0.036 seconds

Application of Finite Element Method to Floor Impact Vibration Analysis in the Apartment Buildings (공동주택의 바닥 충격 진동 해석을 위한 유한요소법 응용)

  • Seo, Sang-Ho;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.387-390
    • /
    • 2005
  • Finite element method was applied to the vibration analysis of concrete slab system in apartment building. To save the time and cost the 2 dimensional finite element model was proposed. At first, experimental results show that sound peak components to influence the overall level and the rating of floor impact sound insulation were coincident with natural frequencies of the reinforced concrete slab. Second, there is linear relationship between the impact sound pressure level and vibration acceleration level. Third, 2 dimensional finite element model was enough to analyze the vibration analysis of floor structure system.

  • PDF

Reduction of Floor Impact Noise and Impact Force for PVC Floor Covering and Floor Mat (PVC 바닥 마감재와 바닥 매트의 바닥충격음 및 충격력 저감)

  • Mun, Dae-Ho;Song, Guk-Gon;Lee, Cheol-Seung;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.501-508
    • /
    • 2014
  • Floor finishing materials such as floor coverings and floor mats can reduce floor impact noise easily. When an impact was applied to the floor, its finishing material is deformed and the impact force that was applied to the concrete slab is changed. The softer finishing materials were, the more impact force decreased. An experimental study was performed using 14 PVC floor coverings and 16 floor mats to capture the characteristics of impact force and impact noise in the residential buildings. The test results show that the impact force spectrum and the floor impact noise spectrum have a linear relationship in the case of a bare concrete slab, and the characteristics of impact force reduction are the same as those of floor impact noise reduction.

Mix Design of Polymer Grouting Mortar for Prepacked Concrete Using Polymer Dispersions (폴리머 디스퍼션을 이용한 프리팩트 콘크리트용 주입 모르타르의 배합에 관한 연구)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.85-91
    • /
    • 2008
  • Prepacked concrete has recently been used in the special constructions fields such as underwater concrete work, heavy-weight concrete work, underground structure work, partial repair works for damaged reinforced concrete structures. and polymer-modified mortars have been employed as grouting mortars for the prepacked concrete. The purpose of this study is to recommend the optimum mix design of polymer-modified grouting mortars for prepacked concrete. Polymer-modified mortars using SBR and EVA emulsions as admixture of grouting mortars for prepacked concrete are prepared with various mix proportions such as sand-binder ratio, fly ash replacement ratio, polymer-binder ratio. and tested for flowability, viscosity of grouting mortars, bleeding ratio, expansion ratio, flexural and compressive strengths of grouting mortars and compressive and tensile strengths of prepacked concretes. From the test results, it is apparent that polymer-modified mortars can be produced as grouting mortars when proper mix design is chosen. We can design the mix proportions of high strength mortars for prepacked concrete according to the control of mix design factors such as type of polymer, polymer-binder ratio, sand-binder ratio and fly ash replacement ratio. Water-binder ratio of plain mortars for a constant flowability value are in the ranges of 43% to 50%. SBR-modified mortar has a little water-binder ratios compared to those of plain mortar, however, EVA-modified mortar needs a high water-binder ratio due to a high viscosity of polymer dispersion. The expansion and bleeding ratios of grouting mortars are also controlled in the proper value ranges. Polymer-modified grouting mortars have good flexural. compressive and tensile strengths, are not affected with various properties with increasing fly ash replacement to cement and binder-sand ratio. In this study, SBR-modified grouting mortar with a polymer-binder ratio of 10% or less, a fly ash replacement of 10% to cement and a sand-binder ratio of 1.5 is recommended as a grouting mortar for prepacked concrete.

A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust (EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구)

  • 류한길;임남웅;박종옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.143-151
    • /
    • 1997
  • Chemical resistance of the cement mortar containing the Thermally Activated Diaomite(TAD) and H.M.(Heavy Metals) has been studied. The H.M.. extracted from EAF(Electrica1 Arc Furnace) Dust. were saturated with diatomite. The diatomite was then thermally activated at $750{\circ}C$ for 30minutes and powdeled. The powder was mixed with a portland cement on a weight basis from 0%. 2.5%. 5.0%. 10%. 20%. The optimum mixture. after those mixtures were subjected to compressive strength(7 and 28days) and leaching bchaviour of H.M.. was tested for its experiment on Wet/Dry cycles and chemical resistance(e.q. imrncrsion in 5%(Conc.) of H2S04, CaC12 and hlgSO4. It was shown that the cement, mortar containing 10% of' P.D. gave a rise to the remarkable increase in compressive strength. The compressive strength was generally decrease beyond the addition of 10% of P.D. The maximum $496kgf/cm^2$ of 28days compressive strength was acheiveti when 10% of P.D. was added to the cement mortar.

Evaluation of Cracking Strength of Floating Floor System (뜬바닥구조의 균열강도 평가)

  • Lee, Jung-Yoon;Lee, Bum-Sik;Jun, Myoung-Hoon;Kim, Jong-Mun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This paper reports the test results of the floating floor system used to reduce the floor noise of apartment buildings. Recently, many soft resilient materials placing between the reinforced concrete slab and finishing mortar are used. The resilient material should not only reduce the floor impact sound vibration from the floor but also support the load on the floor. Thus, even if soft resilient materials satisfy the maximum limitation of light-weight impact sound and heavy-weight impact sound, these materials may not support the load on the floor. The experimental program involved conducting sixteen sound insulation floating floor specimens. Three main parameters were considered in the experimental investigation: resilient materials, loading location, and layers of floor. Experimental results indicated that the stiffness of resilient material significantly influenced on the structural behavior of floating floor system. In addition, the deflection of the floating concrete floor loaded at the side or coner of the specimen was greater than that of the floor loaded at the center of the specimen. However, the aerated concrete did not effect on the cracking strength of floating floor system.

Development of a Lightweight Construction Material Using Hollow Glass Microspheres (중공 유리 마이크로스피어를 활용한 경량 소재 개발)

  • Lee, Nankyoung;Moon, Juhyuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.449-455
    • /
    • 2022
  • Concrete is the most widely used construction material. The heavy self-weight of concrete may offer an advantage when developing high compressive strength and good dimensional stability. However, it is limited in the construction of super-long bridges or very high skyscrapers owing to the substantially increased self-weight of the structure. For developing lightweight concrete, various lightweight aggregates have typically been utilized. However, due to the porous characteristics of lightweight aggregates, the strength at the composite level is generally decreased. To overcome this intrinsic limitation, this study aims to develop a construction material that satisfies both lightweight and high strength requirements. The developed cementitious composite was manufactured based on a high volume usage of hollow glass microspheres in a matrix with a low water-to-cement ratio. Regardless of the tested hollow glass microspheres from among four different types, compressive strength outcomes of more than 60 MPa and 80 MPa with a density of 1.7 g/cm3 were experimentally confirmed under ambient and high-temperature curing, respectively.

Evaluation of Floor Impact Sound Insulation Performance for Building Floors with Damping Materials (완충재 적용현장에서의 바닥충격음 차단성능 현황분석)

  • 김경우;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.53-58
    • /
    • 2001
  • Floor impact sound has caused many acoustical complaints to the apartment building dwellers. The concrete floating floor construction is one of the most reasonable way to reduce floor impact sound. Recently, many damping materials are used in apartment buildings. In this study, to evaluate floor impact sound insulation performance, field tests were carried at five building floors with damping materials. The test results of impact sound insulation performance for five buildings showed good improvement in light weight impact sound after installation of damping materials, but heavy weight impact sound wasn't improved.

  • PDF

Optimum tuned mass damper design for preventing brittle fracture of RC buildings

  • Nigdeli, Sinan Melih;Bekdas, Gebrail
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.137-155
    • /
    • 2013
  • Brittle fracture of structures excited by earthquakes can be prevented by adding a tuned mass damper (TMD). This TMD must be optimum and suitable to the physical conditions of the structure. Compressive strength of concrete is an important factor for brittle fracture. The application of a TMD to structures with low compressive strength of concrete may not be possible if the weight of the TMD is too much. A heavy TMD is dangerous for these structures because of insufficient axial force capacity of structure. For the preventing brittle fracture, the damping ratio of the TMD must be sufficient to reduce maximum shear forces below the values proposed in design regulations. Using the formulas for frequency and damping ratio related to a preselected mass, this objective can be only achieved by increasing the mass of the TMD. By using a metaheuristic method, the optimum parameters can be searched in a specific limit. In this study, Harmony Search (HS) is employed to find optimum TMD parameters for preventing brittle fracture by reducing shear force in additional to other time and frequency responses. The proposed method is feasible for the retrofit of weak structures with insufficient compressive strength of concrete.

Development of Blade on 9㎥ Class of Mixer Drum (9㎥급 믹서드럼 블레이드의 개발)

  • Shin, H.G.;Choi, H.C.;Bean, D.H.;Kim, Y.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2011
  • The concrete mixer truck which is in charge of raw materials in civil engineering construction of the concrete loading, transport, placement, is used $6m^3$, $7m^3$ class in domestic(Korea). But in the case of the international construction fields are utilized $9m^3$ or above class because of the large-scale engineering and construction circumstances. In this paper, to develop a large $9m^3$ class mixer drum and the mixer drum in order to complement the technical and discharge that is responsible for stirring the blades by applying optimal design through implementation of the optimal shape of the concrete in the drum maintenance and placement of high-quality effects on increasing discharge such as advanced conventional drum mixer is to secure and differentiated technology. Large, heavy weight in development and uphold the drum mixer vehicle sub-frame is required to settle the design of the existing class mixer drum frames per $6m^3$ changed to account for changes in slope and length using CATIA V5 3D modeling work was performed.

A Physical Properties of Lightweight Foamed Concrete According to Lightweight Aggregate Types and Foaming agent Types (경량골재와 기포제 종류에 따른 경량기포 콘크리트의 물리적 특성)

  • Kim, Ha-Seog;Lee, Sea-Hyun;Sun, Jung-Soo;Kim, Jin-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.435-444
    • /
    • 2016
  • In Korea, approximately 48% of all households live in apartments, which are a form of multi-unit dwellings, and this figure increases up to 58%, when row houses and multiplex houses are included. As such, majority of the population reside in multi-unit dwellings where they are exposed to the problem of floor impact noise that can cause disputes and conflicts. Accordingly, this study was conducted to manufacture a high-weight, high-stiffness foamed concrete in order to develop a technology to reduce the floor impact noise. For the purpose of deriving the optimum mixing ratio for the foamed concrete that best reduces the floor impact noise, the amounts of the foaming agent, lightweight aggregate and binder were varied accordingly. Also, the target characteristics of the concrete to be developed included density of over $0.7t/m^3$, compressive strength of over $2.0N/mm^2$ and thermal conductivity of under 0.19 W/mK. The results of the experiment showed that the fluidity was very excellent at over 190 mm, regardless of the type and input amount of foaming agent and lightweight aggregate. The density and compressive strength measurements showed that the target density and compressive strength were satisfied in the specimen with 50% foam mixing ratio for foamed concrete and in all of the mixtures for the lightweight aggregate foamed concrete. In addition, the thermal conductivity measurements showed that the target thermal conductivity was satisfied in all of the foamed concrete specimens, except for VS50, in the 25% replacement ratio case for Type A aggregate, and all of the mixtures for Type B aggregate.